سرویس و نگهداری کولر آبی

سرویس و نگهداری کولر آبی

شرکت خدماتی خدمات متفاوت در سرویس ونگهداری کولر آبی از جمله عیب یابی ،تعویض پوشال ، روغن کاری ،شستشو ، در صورت نیاز رنگ کاری ….در کوتاه ترین زمان انجام می دهند.

وبخش آموزش شرکت خدماتی برای کسانی که خودش می خواهد سرویس کولر آبیرا انجام دهد،خواندن مقالات زیر کمک می کند کولر خنک وبدون صدای اضافی داشته باشند.

1- بمنظور جلوگیری از لرزش در محل اتصال کولر به کانال ها باید از برزنت استفاده شود.

2- هنگام راه اندازی کولر در ابتدای فصل گرما به نکات زیر توجه کنید:
دیواره های کولر را جدا کنید ودر صورت نیاز پوشال ها را تعویض کنید. پوشال ها باید به گونه ای توسط توری های سیمی محکم به در پوش ها بسته شوند که آب از آنها بر روی فن ویا تسمه وپمپ وموتور نریزد.- کف کولر را شست وشو داده ودر صورت زنگ زدگی ،سوراخ شدن آن را ترمیم کنید. البته بهتر است در پایان فصل گرما واز کار انداختن کولر محل های زنگ زده را ضد زنگ زده ورنگ کاری نماییم.- یاتاقان های توربین وجا روغنی های روی موتور را روغن کاری کنید وبا دست هر دو فلکه را بچرخانید تامطمئن شوید که مانعی در حرکت آن ها موجود نیست .تسمه وفلکه های (پولی ) موتور وتوربین باید در یک امتداد باشند تا موجب لنگی وساییدگی تسمه و لرزش نشود. در صورت ساییدگی وبریدگی تسمه آن را تعویض کنید.معمولا”پمپ های آب احتیاج به روغنکاری ندارند ولی آن ها را از جای خود خارج کرده ورسوب اطراف پروانه ها را تمیز کنید همچنین صافی آن را تمیز کرده ودر جای خود قرار دهید. با پر کردن تشتک تحتانی از آب وروشن نمودن واتر پمپ اطمینان حاصل نمایید که مسیر آب در شیلنگ و سه راهه و آب پخش کن ها باز است.ناودان های پخش کننده مستقر در در پوش ها را تمیز کرده تا منافذ آن ها باز شود. شناور را طوری تنظیم نمایید که آبی از تشتک یا دریچه اطمینان سرازیر نشود. هنگام روشن کردن کولر ابتدا به مدت ده دقیقه واتر پمپ را روشن کرده تا پوشال ها خیس شوند.وقبل از روشن کردن موتور اصلی کولر برای اولین بار پارچه بزرگی را خیس نموده جلوی دریچه ها گرفته تا ذرات زنگ وگرد خاک را به خود گرفته ومحیط را کثیف نکند.
عیب یابی کولرو تعمیر کولر آبی :
1- با زدن کلید ها ،الکتروموتور دو دور وپمپ آب روشن نمی شوند.
الف – فیوز قطع است ویا خراب شده ، ورود و خروج فاز به فیوز را توسط فاز متر بررسی نمایید.اگر به فیوز فاز می رسد امابا حرکت اهرم آن فاز خارج نمی شود ،فیوز خراب شده است آن را با فیوزی هم آمپر خودش تعویض نمایید.
ب- در فاز یا نول اصلی (سیم رابط ) مشکلی بوجود آمده ، اگر در مبدأ درون کلید برق وجود دارد ،فیوز هم سالم است اما به ترمینال کولر برق ۲۲۰ ولت نمی رسد،بطور قطع سیم (کابل) رابط دچار اشکال شده است.آن را تعویض نمایید.
2- موتور کار می کند اما باد کولر خنک نیست.
الف- در کف تشتک آبی وجود ندارد، عدم وجود آب یا کافی نبودن آن می تواند به سوراخ شدن تشتک کولر – نشتنمودن آب از شیر اطمینان- تنظیم نبودن فلوتر (شناور) مربوط باشد.
ب- واتر پمپ عمل نمی کند یا شلینگ رابط پاره شده، به کنار کولر بروید وبه پوشال ها دقت نمایید. اگر صدای ریزش آب به گوش نرسید وهمچنین قطرات آب جاری روی پوشال ها رؤیت نشد،مطمئن باشید در سیستم پمپاژ آب مشکلی بوجود آمده. این عیب می تواند به خود واتر پمپ ویا پارگی شلینگ مربوط باشد.دریچه ها را باز نمایید تا مورد معیوب را دقیقا” شناسایی کنید. خرابی واتر پمپ می تواند به هر زگرد شدن پروانه ویا نیم سوز شدن موتور مربوط باشد البته گاها”دیده می شود که واتر پمپ کاملا” سالم است اما در سیستم برق رسانی به آن مشکل بوجود آمده قبل از آن که واتر پمپ را سوخته تلقی کنید، سیم های رابطش را جدا نموده وبتوسط دو سیم دیگر به آن برق ۲۲۰ ولت برسانید.اگر عمل نکرد وپروانه هم گریپاژ نیست پس واتر پمپ سوخته است در صورت پاره شدن شلینگ نیز آن را تعویض نمایید.
پ- سوراخ ناودان ها مسدود شده ، دریچه ها را از کولر جدا نموده ودر صورت امکان پوشال ها را نیز جدا نمایید سپس سوراخ های موجود روی ناودان ها را با جوهر نمک وبرس بشوئیدتا جرم روی حفره ها کاملا” پاک شود. سپس ناودان ها را با آب کافی بشوئید تا بوی جوهر نمک کاملا” رفع گردد، سپس پوشال ها وشبکه های توری را ببندید و مطمئن باشید به تهویه مناسبی دست خواهید یافت.
3- واتر پمپ والکتروموتور دو دور در حال کارند اما خنک کنندگی کولر ، کیفیت چندانی ندارد.
الف – تسمه تنظیم نیست ، برای تنظیم تسمه باید پیچ های پایه الکتروموتور را شل کرد وپایه را طوری جابجا کرد که تسمه نه شل باشد که روی پولی ها کمانه کند ونه آنقدر سفت باشد که محور را تحت تنش قرار داده بوش ویا تاقان ها را خراب کند ویا سبب سوختگی موتور گردد. بهترین حالت رگلاژ تسمه آن است که اگر تسمه را نزدیک پولی کوچک توسط دو انگشت به هم نزدیک کنیم به اندازه یک بند انگشت با هم فاصله داشته باشند.یا اینکه اگر موتور را خاموش نمودیم سریع فن توقف نکند بلکه حدود ۵ الی ۶ دور بزند سپس بایستد.برای تعویض تسمه ضخامت وطول تسمه را باید جزء مشخصات آن در نظر داشته باشید.
ب- پارچه برزنتی لرزه گیر پاره است ، پارچه برزنتی را بر رسی نمایید واگر در آن پارگی مشاهده وقابل تعمیر نیست،آن را تعویض نمایید.
4-  واترپمپ و الکتروموتور کار می کنند اماخنک کنندگی کولر کم است.
الف-موتور فن نیم سوز است،بتوسط یک آمپر متر ،جریان موتور فن را اندازه گیری نموده وبا جریان ثبت شده بر روی آن مطابقت دهید.اگر جریان اندازه گیری شده چند برابر جریان نامی موتور بوده وبدنه استاتور سریع داغ می شود موتور نیم سوز است.
ب- مقدار پوشال ها کم است وهوا آزادانه وارد کولر می شود ، اگر پوشال ها را تعویض نموده اید ،در جاگذاری پوشال های جدید دقت به عمل نیامده سعی شود جاگذاری پوشال ها یکدست باشد وپوشال ها همه ی سطح در پوش ها را اشغال نماید زیرا اگر قسمتی بدون پوشال باشد هوای گرم خارج کولر از آن قسمت مکیده شده وبه محیط ساختمان راه یافته وتهویه هوا را مختل می سازد.
5- موتور فن کار نمی کند (واتر پمپ کار می کند)
به موتور فن برق نمی رسد،ممکن است فاز مربوط به موتور در کلید مخصوص کولر قطع شده ویا موردی مشابه در مورد نول صورت گرفته باشد.اگر مشکل از پارگی ویا قطع شدگی فاز یا نول است ،نقطه پاره شده را ترمیم نمایید.
6-  موتور فن کار نمی کند:
بازدن کلید بین کنتاکت های HI وCOM (روی تخته فیبری موتور) برق ۲۲۰ ولت وجود دارد اما راه نمی افتد.
7- موتور صدای هوم می دهد.اما براه نمی افتد:
بطورخلاصه  متوان گفت،سیم پیچ راه انداز سوخته است -سیم بندی راه انداز به کلید گریز از مرکز وصل نشده است- پس از خاموش کردن کولر کلید گریز از مرکز به حالت عادی خود باز نگشته است- تسمه بیش از حد سفت شده است-پولی ها در یک امتداد نیستند-سیم بندی دور تند نیم سوز شده است.
7- فقط یکی از دور های موتور فن کار می کند.
الف – سیم مربوط به دور دوم از صفحه کلید موتور قطع شده،ابتدا برق کولر را قطع نمایید.سپس سیم های متصله به موتور را از آن جدا نموده وبا اهم متر هر سیم پیچ به کلید موتور را بر رسی نمایید.به احتمال زیاد یکی از سر سیم های HI ویا LOW از صفحه کائوچویی جدا شده است که می بایست سیم مربوطه را لحیم نمایید.اگر پارگی در درون استاتور باشد،کار قدری مشکل می شود وبهتر است در صورت عدم تخصص کافی به سیم پیچ های استاتور دست نزنید واز تعمیر کار مجرب کمک بگیرید.
ب- یکی از سر سیم های رابط بین کلید تبدیل وپایه های LOW ویا HI در مسیر قطع شده است،برای آن که مطمئن شویم سیم های رابط بین تبدیل وموتور سالم اند بهتر است دو خروجی را داخل کلید تبدیل به یکدیگر متصل نموده ودو سیم متصل به پایه های LOW و HI رااز اتصالات تخته کلید موتور جدا نموده واهم متر را به آن ها متصل می کنیم .اگر دو سیم رابط سالم بوده ودر مسیر دچار پارگی نشده باشند عقربه منحرف شده ومقداری اهم که در واقع اهم سیم های رابط است را نشان می دهد.واگر عقربه منحرف نشده ،سیم ها دچار پارگی شده اند وچون کابل چهار سیمه است باید کابل اصلی تعویض شود.
8- فقط یکی از دور های موتور کار می کند.
الف- کلید گریز از مرکز عمل نمی کند، در موتور کولر همیشه در لحظه اول سیم پیچ های استارت ودور تند در مدارند وبه محض رسیدن سرعت موتور به ۷۵ درصد سرعت نامی کلید عمل نموده واستارت را از مدار خارج می کند وبا خارج شدن استارت دور تند در مدار مانده و موتور سرعت می گیرد.سپس می توان با تغییر دادن وضعیت تبدیل از دور کند موتور استفاده نمود واگر کلید گریز از مرکز عمل نکند وسیم پیچ کمکی در مدار باقی بماند، موتور سرعت چندانی نداشته وضمن بگوش رسیدن صدای خشن از موتور ،داغ هم می شود. مشکل کلید گریز از مرکز معمولا”شکستن صفحه فیبری ویا اکسید شدن فنر ها است که می بایست روتور را از استاتور جدا نموده وپس از سرویس محرک کلید ، یقینا” موتور به کار نرمال خود ادامه می دهد.
ب- کلید تبدیل خراب است، به علت بالا بودن جریان مصرفی در کولر گاها”کنتاکت ها درون کلید تبدیل به یکدیگر جوش می خورند.قاب کلید تبدیل را باز نموده ،وبا اهم متر (در حالی که فیوز اصلی کولر قطع است ) از حرکت اهرم کلید بین کنتاکت مشترک با دو خروجی اطمینان حاصل کنید.اگر در کنتاکت ها جوش خوردگی دیده شود،آن ها را از یکدیگر جدا نموده وپس از سمباده کشی کلید را مجددا” در مدار قرار می دهیم.اگر همچنان عملکرد مثبتی نداشت آن را تعویض می کنیم.
9- صدای کولر در حال کار زیاد است.
الف- پولی ها یا یکی از پولی ها شل شده است، در پوش سمت پولی ها را از بدنه جدا نموده واتصال آن ها به محور را کنترل نمایید.در صورت لزوم ،پولی ها را محکم بر روی محور فن ببندید.
ب- یاتاقان ها گشاد شده اند،در پوش های دوطرف فن را باز نموده ومحور را بصورت شعاعی (عمودی) حرکت دهید اگر محور حرکت عمودی داشت ،نیاز است بوش ها را تعویض نمایید.البته در بعضی موارد یاتاقان ها (بوش ها) سالم اند اما به سبب شل شدن بست یاتاقان این عیب بروز می کند.
پ-  محور فن تاب بر داشته است،اگر محور فن تاب داشته باشد،در حال گردش لنگر انداخته وعلاوه بر تولید صدای زیاد،سبب خرابی یاتاقان نیز می گردد. رفع این عیب نیاز به تجربه ومهارت خاصی دارد واز جمله مهارت های تراشکاران محسوب می شود.
ت-  صدا از موتور فن است،صدای خشن موتور فن می تواند از در گیر شدن پروانه خنک کننده با در پوش به سبب خرابی یا تا قان وتاب داشتن محور فن ناشی گردد. موارد فوق را بررسی نمایید وقطعه معیوب را شناسایی وعیب را بر طرف نمایید.
ج- تسمه خراب است ،خراش های روی تسمه موجب صدای خشن کولر در حال کار می شود. اگر تسمه معیوب است با ارائه آن به فروشگاه قطعات کولر، تسمه ای با سایز خودش را تهیه نمایید.
10- موتور فن مرتبا” خاموش وبصورت خودکار روشن میشود.
روشن وخاموش شدن مرتب موتور نشانگر وجود اورلود سر راه سیم مشترک موتور ویا داخل آن (موتور ) میباشد. با عبور جریان بیش از حد از وسیله وبوجود آمدن گرمای زیاد اورلود بطور خودکار عمل کرده وجریان را قطع می کند وبا سرد شدن مجدد وسیله (موتور ) جریان بر قرار وموتور به حرکت در می آید .
عوامل تحریک کننده اورلود در کولر عبارتنداز: نیم سوز بودن موتور- خارج نشدن سیم پیچ استارت از مدار (عمل نکردن کلید گریز از مرکز )-سفت بودن تسمه – گریپاژ بودن یاتاقان ها -بسته بودن دریچه هوای کولر ودر نتیجه آن تراکم هوای داخل که گردش فن را مشکل می سازد-در یک امتداد نبودن پولی ها . کلیه موارد مذکور می بایست مورد به مورد بر رسی گردد تا مشکل اصلی شناسایی وعیب بر طرف شود.
10- آب کولر سر ریز می شود.
این مشکل می تواند به تنظیم نبودن فلوتر مربوط باشد. همچنین سوراخ شدن گوی پلاستیکی شناور سبب می شود گوی پر از آب شود وبه ته آب تشتک رود ، در نتیجه آب بیش از حد وارد کولر شده وسر ریز می کند در این صورت می بایست شناور تعویض شود.
11- هنگام کار کولر قطرات ریز آب وارد محیط می شود.
شلینگ پاره شده و آب بداخل پره های تور بین پاشیده می شود.آب از طریق پوشال وتسمه بداخل فن ریخته می شود.

شرکت خدمات باداشتن تعمیر کار حرفه ای سرویس ونگهداری از کولر آبی در فصل گرما درسراسر تهران اقدام نموده است .با توجه به شعبات این شرکت در مناطق مختلف تهران سرویس کولر آبی در اسرغ وقت وبا کیفیت عالی انجام می گیرد.
مزایای سرویس ونگهداری از کولر آبی توسط سرویس کننده ای حرفه ای باعث کارکرد بهتر و افزایش عمر کولر می گردد .مواردی که سرویس کارکولر باید انجام دهد.1- روغن کاری یاتاقان ها  2- شستشوی 3- بازدید مسیر هوا و اطمینان از سالم بودن برزنت 4- در صورت نیاز تعویض پوشال 5- تنظیم نمودن فلوتر6- کنترل تسمه وشلنگ های آب شرکت سرویس با چندین سال خدمات در زمینه سرویس ونگهداری از کولر آبی جهت رفاه متشتریان خودعیب یابی کولروتعمیرکولر آبی،شامل :

1- با زدن کلید ها ،الکتروموتور دو دور وپمپ آب روشن نمی شوند 2- موتور کار می کند اما باد کولر خنک نیست 3 – واتر پمپ والکتروموتور دو دور در حال کارند اما خنک کنندگی کولر4- کیفیت چندانی ندارد5- واترپمپ و الکتروموتور کار می کنند اماخنک کنندگی کولر کم است 6- موتور فن کار نمی کند (واتر پمپ کار می کند) 7 – موتور فن کار نمی کند موتور صدای هوم می دهداما براه نمی افتد 8- فقط یکی از دور های موتور فن کار می کند 9- صدای کولر در حال کار زیاد است…

سرویس کولر آبی
سرویس کولر آبی ارج
سرویس کولر آبی آبسال
سرویس کولر آبی ایران شرق
سرویس کولر آبی سپهر الکتریک

به تمام نقاط تهران سرویس کار اعزام میکند
رضایت مشتری هدف ماست

سیم پیچی کولر و سیمپیچی موتور کولر

گزارش کار سیم پیچی کولر و سیمپیچی موتور کولر آبی

جلسه اول
هدف ما سیم پیم پیچی یک موتور تک فاز با استارت موقت می باشد لذا موتور کولر آبی که نمونه ای از اینگونه موتورهامی باشد را انتخاب کردیم سیم پیچی کولر .ابتدا یک پوسته خالی از موتور کولررا انتخاب کردیم با توجه به اینکه طول هسته در این پوسته 3/4سانتی متربود و همچنین به صورت سیم پیچی کولر تجربه ای متوجه شدیم که این پوسته مربوط به یک موتور با قدرت یک،سوم اسب بخار می باشد قبل از هر کاری شیار شماره یک را پیدا می کنیم به گونه ای که چهارمین شیار در طرف راست شیار شروع،ازکوچکترین شیارهای استاتورشیار شماره یک می باشد.
وطبق این شیار بقیه شیارهارا شماره گذاری می کنیم مرحله بعدی عایق گذاری درون شیارهامی باشد.

سیم پیچی کولر

جلسه دوم سیم پیچی کولر

هدف مادر این جلسه سیم پیچی دور تندبرای موتورکولریک،سوم می باشد پس مراحل زیر راطی میکنیم:
1.باید چهاربوبین سه کلافه تهیه کنیم.نمره سیم 70/ انتخاب می شود کلاف ها باید به صورت متحدالمرکز پیچیده شود.
2.تنظیم قالب سیم پیچی برای کوچک ترین کلاف صورت میگیرد ودراین حالت بایدفاصله دوقالب ازیک دیگر21سانتی مترباشد.
3.تعداد دورکلاف کوچک 40دوروکلاف متوسط50دورو کلاف بزرگ 55دوردر نظر گرفته شده که به ترتیب در کلاف پیچ 40-90-120در نظر گرفته می شود
4.گام کلاف هابرای کوچکترین کلاف 7-3 وبرای کلاف متوسط 8-2 وبرای کلاف بزرگ 9-1 می باشد.

جلسه سوم سیم پیچی موتور کولر

ازانجای که در این جلسه قصدمان سیم پیچی دور کند می باشد پس به ترتیب زیر عمل می کنیم
1.اندازه قالب برای کلاف کوچک 20سانتی متر انتخاب می شود
2.شش بوبین دوکلاف آماده می کنیم که تعداد دور هر کلاف 84دور می باشد ونمره سیم 50/ در نظر گرفته می شود.
3.گام کلاف برای کوچکترین کلاف 5-2 وبرای کلاف بزرگتر 6-1 در نظر گرفته می شود.سپس شروع به قرار دادن سیم پیچ ها درون شیارها می نمایم

جلسه چهارم سیمپیچی کولر

هدف ما در این جلسه سیم پیچی استارت می باشد به همین منظور ابتداقالب راتنظیم کردیم به گونه ای که فاصله دوقالب از یک دیگر برای کلاف کوچکتر 20سانتی متر انتخاب شد نمره سیم برای استارت 45/ انتخاب شد چهار بوبین به صورت پشت سرهم آماده کردیم که تعدادکلاف های هر بوبین به این قرار است:
اولین بوبین سه کلافه،دومین بوبین چهار کلافه،سومین بوبین سه کلافه وچهارمین بوبین چهار کلافه بود تعداد دور برای کوچک ترین کلاف 22دور وبه ترتیب 35 و 34 و32 دور زده شد که در کلاف پیچ به ترتیب و به صورت متحدالمرکز 22- 57-91-123دور زده شد گام کلاف به ترتیب وشروع از کوچکترین کلاف 7-4 و8-3 و9-2 و10-1 می باشد

جلسه پنجم سیمپیچی موتور کولر

با قرار دادن سیم پیچ های دور تند وکند واستارت درون شیارها نوبت به سربندی می رسددر این حالت به این ترتیب عمل می کنیم :
سرسیم پیچ استارت وسرسیم پیچ دور تند وسرسیم پیچ دور کندرا در نظر می گیریم پس از عبور دادن این سه سر از یک وارنیش نمره کوچک آنها را به یک دیگر متصل کرده ومشترک در نظر می گیریم به محل اتصال انها سیم افشان با طول مشخص متصل می کنیم محل اتصال لحیم کاری شده ودر این قسمت یک وارنیش نمره مناسب قرار می گیرد.
ته سیم پیچ استارت – کند وتند نیز در وارنیش نمره کوچک قرار گرفته وبه این سه سر هرکدام جداگانه سیم افشان اتصال داده ومحل اتصال لحیم کاری شده و در وارنیش نمره مناسب قرار می گیرد در نهایت چهار سیم مشترک – استارت – کند وتند از یک سمت پوسته بیرون می آیددراین هنگام شروع به نخ بندی کردیم وپس از ان روی سیم پیچ شارلاک ریختیم

سیم پیچی ژنراتور و سیم پیچی الکتروموتور

سیم پیچی ژنراتور و سیم پیچی الکتروموتور

مقدمه
در یک هادی عایق شده مانند قطعه‌ای سیم مسی ، الکترونهای آزاد شبیه مولکولهای گازی که در ظرفی محبوس شده‌اند، حرکات کاتوره‌ای انجام می‌دهند و مجموعه حرکات آنها در طول سیم هیچ گونه جهت مشخصی ندارد. تعداد الکترونهایی که به چپ حرکت می‌کنند با تعداد الکترونهایی که به راست حرکت می‌کنند، یکی است و برآیند آنها صفر می‌باشد. ولی اگر دو سر سیم را به باتری وصل کنیم، این برآیند دیگر صفر نیست.

تاریخچه
تاریخ الکتریسیته به 600 سال قبل از میلاد می‌رسد. در داستانهای میلتوس (Miletus) می‌خوانیم که یک کهربا در اثر مالش کاه را جذب می‌کند. مغناطیس از موقعی شناخته شد که مشاهده گردید، بعضی از سنگها مثل مگنیتیت ، آهن را می‌ربایند. الکتریسیته و مغناطیس ، در ابتدا جداگانه توسعه پیدا کردند، تا این که در سال 1825 اورستد (Orested) رابطه‌ای بین آنها مشاهده کرد. بدین ترتیب اگر جریانی از سیم بگذرد می‌تواند یک جسم مغناطیسی را تحت تأثیر قرار دهد. بعدها فاراده کشف کرد که الکتریسیته و مغناطیس جدا از هم نیستند و در مبحث الکترومغناطیس قرار می‌گیرد.
مشخصات جریان الکتریکی
از نظر تاریخی نماد جریان I ، از کلمه آلمانی Intensit که به معنی شدت است، گرفته شده است. واحد جریان الکتریکی در دستگاه SI ، آمپر است. به همین علت بعضی اوقات جریان الکتریکی بطور غیر رسمی و به دلیل همانندی با واژه ولتاژ ، آمپراژ خوانده می‌شود. اما مهندسین از این گونه استفاده ناشیانه ، ناراضی هستند.
آیا شدت جریان در نقاط مختلف هادی متفاوت است؟
شدت جریان در هر سطح مقطع از هادی مقدار ثابتی است و بستگی به مساحت مقطع ندارد. مانند این که مقدار آبی که در هر سطح مقطع از لوله عبور می‌کند، همواره در واحد زمان همه جا مساوی است، حتی اگر سطح مقطعها مختلف باشد. ثابت بودن جریان الکتریسیته از این امر ناشی می‌شود که بار الکتریکی در هادی حفظ می‌شود. در هیچ نقطه‌ای بار الکتریکی نمی‌تواند روی هم متراکم شود و یا از هادی بیرون ریخته شود. به عبارت دیگر در هادی چشمه یا چاهی برای بار الکتریکی وجود ندارد.

سرعت رانش
میدان الکتریکی که بر روی الکترونهای هادی اثر می‌کند، هیچ گونه شتاب برآیندی ایجاد نمی‌کند. چون الکترونها پیوسته با یونهای هادی برخورد می‌کنند. لذا انرژی حاصل از شتاب الکترونها به انرژی نوسانی شبکه تبدیل می‌شود و الکترونها سرعت جریان متوسط ثابتی (سرعت رانش) در راستای خلاف جهت میدان الکتریکی بدست می‌آورند.
چگالی جریان الکتریکی
جریان I یک مشخصه برای اجسام رسانا است و مانند جرم ، حجم و … یک کمیت کلی محسوب می‌شود. در حالی که کمیت ویژه‌ دانستیه یا چگالی جریان j است که یک کمیت برداری است و همواره منسوب به یک نقطه از هادی می‌باشد. در صورتی که جریان الکتریسیته در سطح مقطع یک هادی بطور یکنواخت جاری باشد، چگالی جریان برای تمام نقاط این مقطع برابر j = I/A است. در این رابطه A مساحت سطح مقطع است. بردار j در هر نقطه به طرفی که بار الکتریکی مثبت در آن نقطه حرکت می‌کند، متوجه است و بدین ترتیب یک الکترون در آن نقطه در جهت j حرکت خواهد کرد.
اشکال مختلف جریان الکتریکی
در هادیهای فلزی ، مانند سیمها ، جریان ناشی از عبور الکترونها است، اما این امر در مورد اکثر هادیهای غیر فلزی صادق نیست. جریان الکتریکی در الکترولیتها ، عبور اتمهای باردار شده به صورت الکتریکی (یونها) است، که در هر دو نوع مثبت و منفی وجود دارند. برای مثال، یک پیل الکتروشیمیایی ممکن است با آب نمک (یک محلول از کلرید سدیم در یک طرف غشا و آب خالص در طرف دیگر ساخته شود. غشا به یونهای مثبت سدیم اجازه عبور می‌دهد، اما به یونهای منفی کلر این اجازه را نمی‌دهد. بنابراین یک جریان خالص ایجاد می‌شود.

جریان الکتریکی در پلاسما عبور الکترونها ، مانند یونهای مثبت و منفی است. در آب یخ زده و در برخی از الکترولیتهای جامد ، عبور پروتونها ، جریان الکتریکی را ایجاد می‌کند. نمونه‌هایی هم وجود دارد که علیرغم اینکه در آنها ، الکترونها بارهایی هستند که از نظر فیزیکی حرکت می‌کنند، اما تصور جریان مانند ‘حفره‌های (نقاطی که برای خنثی شدن از نظر الکتریکی نیاز به یک الکترون دارند) مثبت متحرک ، قابل فهم تر است. این شرایطی است که در یک نیم هادی نوع p وجود دارد.

اندازه گیری جریان الکتریکی
جریان الکتریکی را می‌توان مستقیما توسط یک گالوانومتر اندازه گیری کرد. اما این روش نیاز به قطع مدار دارد که گاهی مشکل است. جریان را می‌توان بدون قطع مدار و توسط اندازه گیری میدان مغناطیسی که جریان تولید می‌کند، محاسبه کرد. ابزارهای مورد نیاز برای این کار شامل سنسورهای اثر هال ، کلمپ گیره‌های جریان و سیم پیچهای روگووسکی است.
مقاومت الکتریکی
اگر اختلاف پتانسیل معینی را یک بار به دو انتهای سیم مسی و بار دیگر به دو انتهای میله چوبی وصل کنیم، شدت جریانهای حاصل در هر لحظه با هم اختلاف زیادی خواهند داشت. خاصیتی از هادی را که اختلاف مزبور را باعث می‌شود، مقاومت الکتریکی گویند، که آن را با R نشان می‌دهند و مقدار آن برابر R = V/I است که در آن V اختلاف پتانسیل بین دو سر سیم و I جریان الکتریکی است. واحد مقاومت الکتریکی اهم یا ولت بر آمپر می‌باشد.
توان الکتریکی
یک مدار الکتریکی را در نظر می‌گیریم که حامل جریان I و ولتاژ V بوده و یک مقاومت Rدر آن قرار دارد. بار الکتریکی dq موقع عبور از مقاومت به اندازه Vdq ، از انرژی پتانسیل الکتریکی خود را از دست می‌دهد. طبق قانون بقای انرژی ، این انرژی در مقاومت به صورت دیگری ، مثلا گرما ظاهر می‌شود. گر در مدت زمان dt ، انرژی du حاصل شود، در این صورت داریم:

P=du/dt

در این رابطه P ، توان الکتریکی است که دارای واحد وات می‌باشد. برای یک مقاومت می‌توان توان را به صورت زیر:

P = RI2

نوشت.

سیم پیچی موتور الکتریکی

یک موتور الکتریکی، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکترواستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.
ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای، چرخانه (روتور) به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور چرخانه به چرخانه اعمال می‌شود، می‌گردد.
اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) چرخانه و بخش ثابت ایستانه (استاتور) خوانده می‌شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است.
گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین، هر کدام از بخش‌های چرخانه یا ایستانه می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیت هایی را در مدارس استفاده می‌کنند.
موتورهای دی‌سی
یکی از اولین موتورهای دوار، اگر نگوییم اولین، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه، از آب نمک استفاده می‌شود.
موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه‌ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم‌پیچ) در سیم‌پیچی موتور یا با داشتن یک منبع ولتاژ متغیر، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای کششی نظیر لوکوموتیوها استفاده می‌کنند. اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبک ها و کموتاتور، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نوفه (نویز) الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

موتورهای میدان سیم پیچی شده

آهنرباهای دائم در (ایستانه) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر، جریان میدان را کمتر هم کنیم. این تکنیک برای کشش الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.
موتورهای یونیورسال
یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) هم‌زمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.
مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

موتورهای AC

موتورهای AC تک فاز
معمولترین موتور تک فاز موتور هم‌زمان قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی، تندپزها (اجاقهای ماکروویو) و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگ‌تری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز، ایجاد کنند.
هنگام راه اندازی، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکت های تحت فشار فنر روی کلید گریز از مرکز دوار، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.
موتورهای AC سه فاز
برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان، استفاده می‌کنند. اغلب، روتور شامل تعدادی هادی های مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.
این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از بسامد منبع تغذیه اعمالی به موتور، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور هم‌زمان وجود دارد، موتور به صورت هم‌زمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز، به گردش در می‌آید. موتورهای هم‌زمان (سنکرون) را می‌توانیم به عنوان مولد جریان هم بکار برد.
سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش، یا اختلاف در سرعت چرخش بین چرخانه و میدان ایستانه، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن بسامد منبع تغذیه، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.
موتورهای پله‌ای
نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش می‌شوند، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتاً کنترل شده، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با رایانه یکی از فرمهای سیستم‌های تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند .
موتورهای خطی
یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع السیر مگلو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند.

ساخت كوچكترين ژنراتور دنيا در چين
كوچكترين ژنراتور دنيا، ‌نانوژنراتور، اخيراً در مركز ملي علم و نانوفناوري چين ساخته شد. اين كار توسط پروفسور Wang Zhonglin از دانشگاه Peking و دكتر Song Jinhui انجام شده است.
پيش‌بيني مي‌شود كه از اين نانوژنراتور در محدوده وسيعي از زمينه‌ها ماند بيوپزشكي، مقاصد نظامي، مخابرات و سنسورهاي بي‌سيم استفاده شود.

مولد تحریك سری
در این ژنراتور آرمیچر با سیم پیچ تحریك به صورت سری قرار می گیرد. از آنجا كه جریان بار از سیم پیچ آرمیچر و سیم پیچ تحریك عبور كند باید سیم پیچ تحریك دارای سطح مقطع زیاد و تعداد دور كم باشد. مدار الكتریكی مولد سری و روابط آن بصورت زیر است.
IS : جریان مدار تحریك سری
RS : مقاومت سیم پیچ تحریك سری
مشخصه بی باری مولد سری: (VT = f(IL) n = const)
برای بدست آوردن مشخصه خارجی مولد سری دور مولد را به دور نامی می رسانیم، اول حداكثر مقاومت بار را در مدار قرار میدهیم در این حالت با عبور جریان كم از آرمیچر و تحریك، فوران اگر مخالف پسماند نباشد نیرومحركه القایی زیاد میشود كه در نتیجه ولتاژ خروجی افزایش می یابد با كاهش مقاومت بار جریان تحریك كه برابر با جریان بار و آرمیچر است زیاد شده و قطبها را اشباع می كند و در نتیجه فوران ثابت می ماند و چون دور هم ثابت است نیرومحركه ثابت می ماند اما ولتاژ خروجی به دلایل زیر كاهش می یابد:
1-    افت ولتاژ در هادی های آرمیچر
2-   افت ولتاژ در سیم پیچی تحریك
3-  افت ولتاژ بر اثر عكس العمل مغناطیسی آرمیچر
4-   كاربرد مولد سری: مورد استفاده مولد سری خیلی كم است چون ولتاژ دو سر آرمیچر بر
5- اثر تغییر جریان بار به طور قابل ملاحظه ای تغییر می كند. در عین حال از این مولد بعنوان جبران كننده افت ولتاژ خطوط جریان مستقیم استفاده میشود.

اطلاعات درباره الكتروموتور و سیم پیچی الكتروموتور

یک موتور الکتریکی (الکتروموتور)، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد.

سیم پیچی، نصب و تعمیر انواع الکترو موتور های صنعتی تک فاز و سه فاز، موتور آسانسور، مگنت ترمز، بالابر، ترانس جوش، چیلر، پمپ های زمینی و آب رسانی ساختمان ها

اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود. روتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

انواع موتورهای الکتریکی و سیم پیچی الكتروموتور

موتورهای DC

یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند.

اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

موتورهای میدان سیم پیچی شده

آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

موتورهای یونیورسال

یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.

مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

موتورهای AC

یک موتور الکتریکی (الکتروموتور)، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد.

 

اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود. روتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

انواع موتورهای الکتریکی

موتورهای DC

یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند.

اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

موتورهای میدان سیم پیچی شده

آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

موتورهای یونیورسال

یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.

مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

موتورهای AC

موتورهای AC تک فاز:

معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.

هنگام راه اندازی ، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.

موتورهای AC سه فاز:

برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده می‌کنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز ، به گردش در می‌آید. موتورهای سنکرون را می‌توانیم به عنوان مولد جریان هم بکار برد.
سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش ، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور ، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.

موتورهای پله‌ای

نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی ، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش می‌شوند، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتا کنترل شده ، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با کامپیوتر یکی از فرمهای سیستمهای تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند.

موتورهای خطی

یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش ، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع السیر ماگلیو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند.

موتور جریان متناوب یک ماشين الکتریکی است که با جریان متناوب تغذیه شده و توان الکتريکی را تبديل به توان مکانيکی چرخشی يا خطی می نمايد. موتور جريان متناوب AC از دو قسمت اصلی تشکیل شده:

*استاتور: هسته خارجی و معمولاً ثابت که با استفاده از جریان جریان متناوب میدان دوار ایجاد می‌کند.

*روتور: هسته داخلی و متحرک که به محور خروجی متصل شده و با توجه به میدان دوار تولید شده توسط استاتور، گشتاور تولید می‌کند.

از نظر نوع روتور مورد استفاده قرار گرفته در موتورها، موتورهای جریان متناوب به دو صورت طبقه‌بندی می‌شوند:

*موتور سنکرون یا هم‌زمان که در آن روتور دقیقاً با سرعت میدان دوار می‌چرخد. در این نوع موتورها میدان الکتریکی روتور به وسیله یک منبع خارجی تامین می‌شود.

*موتور اسنکرون یا القایی که در آن میدان الکتریکی روتور از القای میدان استاتور پدید می‌آید.

تاریخچه

در ۱۸۸۲ نیکولا تسلا اصول میدان مغناطیسی دوار را پایه گذاری کرد و راه را برای استفاده از میدان دوار به عنوان یک نیروی مکانیکی باز کرد. در سال ۱۸۸۳ او از این اصول برای طراحی یک موتورالقایی دو فاز استفاده کرد. در ۱۸۸۵ «گالیلئو فراریس» (Galileo Ferraris) مستقلاً تحقیقاتی را در این باره آغاز کرد و در ۱۸۸۸ نتایج تحقیقات خود را در قالب مقاله‌ای به آکادمی‌سلطنتی علوم در تورین ایتالیا ارایه داد.

حرکتی که نیکولا تسلا در ۱۸۸۸ آغاز کرد چیزی بود که امروزه برخی از آن به عنوان «انقلاب صنعتی دوم» یاد می‌کنند، چراکه این حرکت به تولید آسانتر انرژی الکتریکی و همچنین امکان انتقال انرژی الکتریکی در طول مسافت‌های طولانی انجامید. قبل از اختراع موتورهای جریان متناوب به وسیله تسلا موتورها به وسیله حرکت دائم یک هادی در میان میدان مغناطیسی ثابت به حرکت در می‌آمدند. تسلا به این نکته اشاره کرد که می‌توان کلکتورهای موتور را حذف کرد به طوریکه موتور به وسیله میدانی دوار به حرکت درآید. تسلا بعدها موفق به کسب حق امتیاز شماره ۰٫۴۱۶٫۱۹۴ ایلات متحده برای اختراع موتور خود شد. این موتور که در بسیاری از عکس‌های تسلا نیز هست نوع خاصی از موتور القایی بود.

در سال ۱۸۹۰ میخایل اسیبوویچ یک موتور سه فاز روتور قفسی اختراع کرد. این نوع موتور امروزه به طور وسیعی برای کاربردهای گوناگون استفاده می‌شود

موتور جریان متناوب سه فاز القایی

در بیشتر محل‌های که سیستم تغذیه سه فاز (یا چند فاز) در دسترس است از این گونه موتورها استفاده می‌شود به ویژه در قدرت‌های بالاتر استفاده از این موتورها بسیار رایج است. اختلاف زاویه بین هر یک از سه فاز تغذیه کننده باعث به وجود آمدن یک میدان دوار متعادل می‌شود که دارای سرعتی ثابت است.

در یک موتور القایی میدان مغناطیسی دوار موجب القای یک جریان در هادی‌های روتور می‌شود. این جریان به طور متقابل میدان مغناطیسی را به وجود می‌آورد که موجب چرخش روتور در جهت میدان مغناطیسی دوار خواهد شد. اما نکته‌ای که باید به آن توجه داشت این است که روتور همیشه باید با سرعتی کمتری از سرعت استاتور بچرخد و به عبارت دیگر در صورتی که سرعت روتور و میدان دوار یکسان باشد جریانی در روتور القا نخواهد شد.

موتورهای القایی در صنایع به طور گسترده‌ای مورد استفاده قرار می‌گیرند اما قدرت‌های حدود ۵۰۰ کیلووات خیلی بیشتر رایج هستند. موتورهای القایی معمولاً با اندازه‌های استانداردی ساخته می‌شوند (البته این استانداردها در اروپا و آمریکا متفاوت است) این استانداردگذاری در ساخت موتورها تقریباً همه آنها را قابل تعویض می‌کند. توان برخی از موتورها القایی بسیار بزرگ تا ده‌ها هزار کیلو وات می‌رسد و از جمله استفاده‌های این موتورها می‌توان به کمپرسور های خطوط لوله و تونل‌های باد اشاره کرد. برای این موتورها دو نوع مختلف از روتور وجود دارد:

*روتور قفسی (قفس سنجابی)

*روتور سیم‌پیچی شده

انواع موتورهای سه فاز ولتاژ متناوب
موتور القایی روتور قفسی | موتور القایی سیم پیچی شده | موتور سنکرون قطب برجسته | موتور سنکرون قطب صاف‌ |

روتور قفسی

بیشتر موتورهای جریان متناوب از این نوع روتورها استفاده می‌کنند به طوری که می‌توان گفت همه موتورهای خانگی و موتورهای سبک صنعتی از این نوع روتورها استفاده می‌کنند. روتور قفسی یا قفس سنجابی نام خود را به خاطر شکلش گرفته؛ دو رینگ در دو انتهای روتور که به وسیله میله‌های به هم وصل شده‌اند شکلی تقریبً شبیه یک قفس تشکیل می‌دهند. این میله‌ها عموماً از جنس آلمینیوم یا مس هستند و در بین ورقه‌های لایه لایه شده فولادی ریخته شده‌است. بیشتر جریان القا شده در روتور از میان این میله‌ها عبور می‌کند چراکه ورق‌های لایه لایه فولادی به علت لاک زنی شدن دارای مقاومت الکتریکی زیادی هستند. ولتاژ ایجاد شده در بین حلقه‌ها بسیار پایین است اما جریان جاری بسیار زیاد است و این به دلیل مقاومت پایین این میله‌هاست. در موتورهایی که راندمان بالاتری دارند از مس برای تولید روتور استفاده می‌شوند چراکه مقاومت الکتریکی این فلز کمتر است.

در هنگام کار، موتور القایی شبیه یک ترانسفورماتور عمل می‌کند که استاتور اولیه و روتور ثانویه آن محسوب می‌شود. زمانیکه روتور با سرعت میدان دوار نمی‌چرخد جریان القا شده در روتور زیاد است، این جریان زیاد میدان مغناطیسی ایجاد می‌کند که با افزایش سرعت روتور سرعت آن را هرچه بیشتر به سرعت استاتور نزدیک می‌کند. یک موتور القایی روتور قفسی در هنگام بی باری (سرعت برابر با میدان دوار) تنها مقدار کمی‌انرژی الکتریکی برای جبران تلفات مکانیکی (اصطکاک) و تلفات مسی (تلفات ایجاد شده به دلیل مقاومت هادی‌های الکتریکی) مصرف می‌کند. اما زمانی که بار موتور افزایش می‌یابد میزان جریان جاری در روتور افزایش می‌یابد (برای جبران فشار وارده به محور موتور) و به این ترتیب موتور مانند یک ترانسفورماتور عمل می‌کند چراکه با افزایش جریان در ثانویه جریان اولیه نیز افزایش می‌یابد. این دلیل کاهش یافتن نور لامپ‌ها در هنگام روشن شدن موتورهای القایی است البته زمانی که این موتورها به هواکش‌ها متصل شده‌اند این اتفاق نمی‌افتد.

موتورهای القایی که از حرکت وامانده‌اند (به دلیل بار زیاد یا گیر کردن محور) جریانی بسیار زیاد مصرف خواهند کرد چراکه تنها عامل محدود کننده جریان در چنین حالتی مقاومت ناچیز هادی‌های استاتور و روتور خواهد بود و در صورتی که این جریان به وسیله عاملی خارجی مهار نشود موتور و تجهیزات تغذیه کننده آن آسیب خواهند دید.

روتور سیم‌پیچی

زمانی که مقاومت سر راه روتور قابل تغییر باشد، روتور را سیم‌پیچی شده می‌نامند. یکی از کاربردهای این نوع روتورها در موقعیت‌هایی است که به سرعت متغیر نیاز است. در این روتورها سم‌پیچ روتور طوری پیچیده شده که تعداد قطب‌ها در روتور و استاتور برابر هستند و خروجی هر فاز از روتور به طور جداگانه و به وسیله حلقه‌های لغزنده از موتور خارج شده‌است. این حلقه‌های لغزنده ارتباط الکتریکی خود با محور موتور را معمولاً به وسیله کربن ایجاد می‌کنند و پس از خارج شدن از موتور به یک مقاومت متغیر خارجی وصل می‌شوند.

در مقایسه با موتورها روتور قفسی، موتورهای روتور سیم‌پیچی گران‌تر هستند و به علت استهلاک حلقه‌های لغزان دارای هزینه تعمیر و نگه‌داری بالاتری نیز هستند، قبل از تولید تجهیزات کنترل سرعت الکترونیکی این موتورها بهترین راه برای کنترل سرعت بودند همچنین این موتورها می‌توانند در لحظه شروع به کار گشتاور بالاتری داشته باشند. استفاده از کنترل کننده‌های ترانزیستوری فرکانس راهی مناسب برای کنترل دور موتورهای جریان متناوب است و این از تمایل برای استفاده از موتورهای روتور سیم‌پیچی کاسته‌است.

راه‌های مختلفی برای راه‌اندازی موتورهای جریان متناوب استفاده می‌شود که اغلب این راه‌ها بر کاهش جریان هجومی‌در هنگام راه‌اندازی و همچنین افزایش گشتاور راه‌اندازی تکیه می‌کنند. این گونه موتورها تنها با وصل ترمینال‌های ورودی به برق شهری با ولتاژ استاندار شروع به کار می‌کنند و (بر خلاف برخی موتورهای جریان مستقیم) نیاز به روش راه‌اندازی ویژه‌ای ندارند. یکی دیگر از روش‌های کاهش جریان راه‌اندازی موتور، کاهش ولتاژ سیم‌پیچ‌ها در لحظه راه‌اندازی است که این کار به وسیله سری کردن سیم‌پیچ‌های بیشتر یا استفاده از اتوترانسفورماتور،تریستور و یا دیگر تجهیزات کاهش ولتاژ صورت می‌گیرد. روشی دیگر برای کاهش ولتاژ سیم‌پیچ‌ها در لحظه راه‌اندازی تغییر طرز قرار گرفتن سیم پیچ‌ها و استفاده از کلیدهای ستاره-مثلث است. در این حالت ابتدا موتور را در حالت ستاره راه اندازی کرده و پس از رسیدن به دور نامی، ترتیب قرار گرفت سیم‌پیچ‌ها را به وسیله کلید تغییر داده و به حالت مثلث می‌برند. این روش در اروپا رایج‌تر از آمریکای شمالی است.

سرعت موتور آسنکرون

سرعت در یک موتور جریان متناوب به دو عامل فرکانس و تعداد قطب‌های موتور بستگی دارد و از فرمول زیر به دست می‌آید:

که:

NS سرعت میدان دوار یا سرعت سنکرون (r. p. m)

f فرکانس منبع جریان متناوب (هرتز)

P تعداد قطب‌های سیم‌پیچی به ازای هر فاز است.

میزان سرعت واقعی روتور همیشه از سرعت میدان دوار کمتر است. این اختلاف سرعت را لغزش می‌نامند و با S (مخفف slip به معنی لغزش) نمایش می‌دهند. در حالت بی‌باری سرعت روتور به سرعت سنکرون خیلی نزدیک خواهد بود و در بار نامی‌موتور لغزشی بین ۲ تا ۳ درصد خواهد داشت که در برخی موتورها این لغزش تا ۷٪ نیز می‌رسد. میزان لغزش در یک موتور جریان متناوب از رابطه زیر به دست می‌آید:

که:

Nr سرعت روتور (r. p. m)

S میزان لغزش است که می‌تواند عددی بین ۱ و ۰ باشد..

موتور جریان متناوب سه فاز سنکرون

اگر خروجی قطب‌های روتور به وسیله کلکتورها از موتور خارج شده و به یک منبع خارجی وصل شود به طوری که روتور نیز به نوبه خود میدانی جداگانه و مداوم را ایجاد کند به موتور موتور سنکرون یا هم‌زمان گفته می‌شود. سرعت چرخش روتور در موتورهای سنکرون همواره برابر سرعت میدان دوار است و به همین دلیل این موتورها را هم‌زمان می‌نامند.

از این موتورها می‌توان به عنوان یک ژنراتور جریان متناوب نیز استفاده کرد.

امروزه موتورهای سنکرون را اغلب به وسیله کنترل کننده‌های ترانزیستوری فرکانس راه‌اندازی می‌کنند. این موتورها همچنین می‌توانند به صورت یک موتور القایی نیز راه‌اندازی شوند به این صورت که در روتور این موتورها از میله‌های هادیی شبیه روتورهای قفسی استفاده می‌شود و پس از راه اندازی، این قسمت روتور خود به خود از مدار خارج می‌شود به این صورت که پس از رسیدن موتور به دور نامی‌مقدار ناچیزی جریان در قفس رتور القا می‌شود و بدین ترتیب تقریباً از مدار خارج می‌شود.

یکی از کاربردهای موتورهای سنکرون اصلاح ضریب توان است. در مراکز صنعتی تقریباً تمامی‌بارها (به جز موتورهای سنکرون پر تحریک) از انرژی الکتریکی به صورت پس فاز استفاده می‌کنند. بارهای پس فاز موجب به وجود آمدن اختلاف فاز در مدار شده و ضریب توان مدار را کاهش می‌دهند که این می‌تواند موجب به وجود آمدن تلفات اضافی در طول خطوط شود. به دلیل خصوصیت خاص موتورهای سنکرون می‌توان از آنها برای اصلاح ضریب توان نیز استفاده کرد، چراکه در صورتی که موتور سنکرون در حالت پر تحریک کار کند تقریباً مانند یک بار خازنی عمل کرده و از انرژی الکتریکی به صورت پیش فاز استفاده می‌کند و به این ترتیب می‌توان از یک موتور سنکرون به جای خازن‌های اصلاح ضریب توان استفاده کرد. این خصوصیت موتورهای سنکرون باعث شده که با وجود مشکلات مربوط به راه‌اندازی آنها، استفاده از آنها هنوز رایج باشد.

برخی از بزرگ‌ترین موتورهای جریان متناوب در نیروگاه‌های آب تلمبه‌ای مورد استفاده قرار می‌گیرند چراکه این موتورها به راحتی می‌توانند نقش ژنراتور را ایفا کنند و به این ترتیب در ساعات کم مصرف انرژی الکتریکی به صورت موتور عمل کرده و آب را به مخزن پر ارتفاعی پمپ کنند و سپس در ساعات پر مصرف با پایین آمدن آب به صورت ژنراتور عمل کرده و از شبکه پشتیبانی کنند. در نیروگاه آب تلمبه‌ای Bath County در ویرجینیای آمریکا از شش ژنراتور سنکرون ۳۵۰ مگاواتی استفاده شده‌است که در زمان پمپ، هرکدام می‌توانند توانی برابر ۵۶۳۴۰۰ اسب بخار (۴۲۰۱۲۷ وات) تولید کنند.

راه اندازی

موتورهای آسنکرون با توجه به قدرت و ولتاژ آن به طرق مختلف راه اندازی می‌شوند و با توجه به ‏اینکه موتور در لحظه شروع به کار جریان زیادی از منبع الکتريکی می‌کشد و این جریان زیاد علاوه بر اینکه به خود ‏موتور صدمه می‌زند به مصرف کننده‌های دیگری که از این خط مشترک تغذیه می‌شوند لطمه زده و کار آنها را ‏مختل می‌سازد‎. ‎ موتور آسنکرون معمولاً به روشهای زیر راه اندازی می‌شود در نتیجه جریان راه اندازی‌ کم می‌شود‏‎:

به طور مستقیم‎

برای‌ موتورهایی که بزرگ نیستند و‌ آمپر زیادی از شبکه نمی‌‏کشند بوسیله یک کلید سه قطبی به شبکه متصل می‌شوند‎.

توسط کليد يا مدار ستاره–مثلث

ابتدا ولتاژ اولیه را که بر هر فاز متصل می‌شود،‌ را کم مى کنیم سپس ‏وقتی که موتور به دور نرمال خود رسید ولتاژی را که به هر فاز می‌رسد زیاد می‌کنیم. بنابراین در لحظه اول کلید به حالت ستاره بوده یعنی ولتاژ دو سر هر فاز به‎ u/√3 ‎تقلیل می‌یابد ‏در نتیجه موتور با توان 3/1 توان نامی‌خود کار می‌کند‏‎. استعمال کلید روی انواع موتورها با روتور قفسه‌ای یا روتور سیم پیچی امکان پذیر است. ولی در ‏موتورهایی که با بار زیاد کار می‌کنند از کلید برای راه اندازی استفاده نمی‌شود. چون گشتاور ‏مقاوم بار زیاد است‎.

توسط کمپانساتور

این وسیله راه اندازی که اتوترانسفورماتور کاهنده است بین موتور ‏و شبکه قرار می‌گیرد. این طریق راه اندازی به دلیل اینکه جریان شروع به کار و گشتاور شروع به ‏کار هر دو به یک نسبت پایین می‌آیند خیلی خوب است. ولی چون هزینه آن گران است فقط در ‏موتورهایی که قدرت زیاد دارند استفاده می‌شوند‎.

اضافه کردن مقاومت در مدار روتور

برای جلوگیری از ‏عبور جریان زیاد در موقع راه اندازی موتور می‌توان مقاومت هایی به طور سری سر راه سیم پیچی ‏های موتور قرار دارد. و به تدریج که موتور دور می‌گیرد دسته مقاومتهای راه انداز را به طرف چپ ‏حرکت داده در این صورت کم کم مقاومتها از سر راه مدار خارج می‌شود‎. این طریق راه اندازی به دلیل تلفات انرژی در مقاومتها زیاد و نیروی کشش در لحظه شروع به کار کم ‏، استعمال کمی‌دارد‎.

اضافه کردن مقاومت در مدار استاتور

تمام ‏مقاومتهای راه انداز را سر راه سیم پیچی روتور قرار داد. بدین وسیله مقاومت مدار سیم پیچی روتور ‏را به حداکثر مقدار خود میرسانند و سپس استاتور را به شبکه برق وصل می‌کنند. مقاومت رئوستای ‏روتور به تدریج از مدار خارج می‌شود.

سروو موتورهای دو فاز جریان متناوب

یک سروو موتور جریان متناوب دارای یک روتور قفسی است و سیم‌پیچ آن شامل دو قسمت است: ۱) سیم پیچ اصلی ۲) سیم پیچ کمکی که از آن برای به وجود آوردن میدان دوار استفاده می‌شود. در این موتورها مقاومت روتور بالا است و بنابراین منحنی گشتاور-دور این موتورها تقریباً خطی است. به طور کلی این موتورها، موتورهایی پر سرعت و با گشتاور پایین هستند و معمولاً قبل از وصل به بار سرعت آنها به وسیله وصل به چرخ‌دنده‌ها کاهش می‌یابد.

موتور با قطب سایه دار

برخی موتورهای جریان متناوب، دارای قطب سایه‌دار (چاک دار) هستند. از این قطب برای ایجاد گشتاور راه‌اندازی در موتور استفاده می‌شود. نمونه این موتورها در فن‌های الکتریکی کوچک و برخی پمپ‌های کوچک و برخی دیگر از موتورهای توان پایین دیده می‌شود. در این موتورها از یک سیم پیچ کوچک و با سطح مقطع پایین با نام سیم‌پیچ سایه‌ای استفاده می‌شود به این صورت که قسمتی از هر قطب به وسیله این سیم‌پیچ پوشیده شده‌است. طرز کار این موتورها به این صورت است که با القای الکتریکی در سیم‌پیچ‌ها به علت خاصیت سلفی سیم‌پیچ‌های سایه‌ای، این سیم‌پیچ‌ها با تغییرات جریان مخالفت می‌کنند (قانون لنز) و بنابراین یک اختلاف اندک بین جریان در سیم پیچ اصلی و سیم‌پیچ سایه‌ای ایجاد می‌شود که موجب چرخش موتور شده و از قفل شدن موتور در لحظه راه‌اندازی جلوگیری می‌کند. با افزایش سرعت روتور نیاز به وجود قطب‌های کمکی از بین می‌رود چراکه به دلیل وجود اینرسی موتور به چرخش ادامه می‌دهد.

موتور القایی با انشقاق فاز

یکی دیگر از انواع موتورهای تک فاز القایی، موتور با انشقاق فاز است که نسبت به موتور با قطب سایه‌دار کاربردهای مهم‌تری دارد. از جمله کاربردهای این موتورها می‌توان به موتورهای مورد استفاده قرار گرفته در ماشین‌های لباسشویی و خشک‌کن‌ها اشاره کرد. در مقایسه با موتورهای با قطب سایه‌دار این موتورها گشتاور راه‌اندازی خیلی بیشتری دارند و این به دلیل استفاده از سیم‌پیچ راه انداز است. این سیم‌پیچ راه‌انداز معمولاً پس از راه‌اندازی کامل موتور به وسیله یک کلید گریز از مرکز از مدار خارج می‌شود.

در موتورهای انشقاق فاز، سیم‌پیچ راه انداز همیشه با مقاومت بیشتری نسبت به سیم‌پیچ اصلی ساخته می‌شود و به این ترتیب نسبت المان‌های سلفی و مقاومتی در هر سیم پیچ متفاوت است، همچنین تعداد دور سیم‌پیچ کمکی کمتر از سیم‌پیچ اصلی است که این موجب کاهش خاصیت سلفی این سیم‌پیچ می‌شود. بنابراین این سیم‌پیچ نسبت به سیم‌پیچ اصلی دارای مقاومت بیشتر و اندوکتانس کمتر است. کمتر بودن نسبت L به R موجب به وجود آمدن اختلاف فاز در دو سیم‌پیچ می‌شود که معمولاً بیشتر از ۳۰درجه نیست. این اختلاف فاز موجب چرخش موتور در لحظه راه‌اندازی می‌شود. پس از راه‌اندازی به علت وجود اینرسی موتور به چرخش خود ادامه می‌دهد و به این ترتیب نیازی به سیم‌پیچ کمکی نخواهد بود به همین دلیل سیم‌پیچ کمکی به وسیله کلید گریز از مرکز از مدار خارج می‌شود و به این ترتیب از ایجاد تلفات اضافی به وسیله سیم‌پیچ کمکی جلوگیری می‌شود.

موتورهای جریان متناوب با خازن راه‌انداز

در موتورهایی که از خازن برای راه اندازی استفاده می‌کنند از یک خازن که با سیم‌پیچ کمکی سری شده استفاده می‌شود. این خازن در واقع وظیفه ایجاد اختلاف فاز بین سیم‌پیچ‌ها را بر عهده دارد. اختلاف فاز ایجاد شده توسط خازن‌ها در لحظه راه‌اندازی خیلی بیشتر از نوع قبلی است و بنابراین میزان گشتاور راه‌اندازی این موتورها نیز بیشتر است و البته هزینه این موتورها نیز بیشتر است.

موتورهای خازنی با خازن ثابت

نوع دیگری از موتورهای جریان متناوب موتورها با خازن ثابت یا موتورهای PSC هستند. این موتورها دقیقاً مانند موتورهای خازنی که در بالا توضیح داده شد عمل می‌کنند با این تفاوت که فاقد کلید گریز از مرکز بوده و بنابراین خازن در این موتورها همواره در مدار است. موتورهای با خازن ثابت به طور گسترده‌ای در فن‌ها، دمنده‌ها و سیستم‌هایی که تغییر سرعت برای آنها مطلوب است استفاده می‌شوند. در برخی موارد که نیاز به استفاده از یک موتور سه فاز به صورت تک فاز است با اتصال یک خازن به یکی از فازها و سری کردن دوفاز دیگر می‌توان از موتور سه فاز به صورت تک فاز استفاده کرد که البته در این حالت گشتاور موتور کاهش می‌یابد.

موتور پولزیون

موتور پولزیون یا موتور دفع کننده نوعی موتور تک فاز جریان متناوب است. روتور این موتورها سیم‌پیچی شده و تا حدودی شبیه موتورهای یونیورسال هستند. در گذشته تعدادی از این موتورها ساخته می‌شد اما استفاده از موتورهای RS-IR (راه‌انداز دفع کننده-حرکت القایی) به نسبت رایج تر بود. موتورهای RS-IR دارای یک کلید گریز از مرکز هستند که پس از رسیدن به سرعت نامی‌تمام کلکتورها را به هم وصل کرده و روتور را به صورت یک روتور قفسی در می‌آورد بنابر این موتور در هنگام کار مانند یک موتور روتور قفسی عمل می‌کند. از موتورهای RS-IR در مواردی استفاده می‌شده که نیاز به وجود گشتاور راه‌اندازی بالا در دمای پایین و تنظیم ولتاژ اندک بوده. امروزه این نوع موتورها ساخته نمی‌شوند.

موتور سنکرون جریان متناوب تک فاز

موتورهای سنکرون تک فاز کوچک به جای ایجاد میدان مغناطیسی به وسیله یک منبع خارجی از آهنرباهای کوچک برای ایجاد میدان استفاده می‌کنند. بنابراین روتور این موتورها نیازی به جریان القا کننده نخواهد داشت. خصوصیت اصلی این موتورها سرعت ثابت آنهاست به طوریکه اغلب در وسایلی از آنها استفاده می‌شود که نیاز به سرعتی ثابت دارند. این موتورها در ساعت‌ها، دیسک گردان‌ها، ضبط صوت‌ها و برخی دیگر از تجهیزات دقیق مورد استفاده قرار می‌گیرد.

مشخصات الکتروموتور ها

مشخصاتي كه روي پلاك الكتروموتور ها مينويسند براي استفاده بهينه در طراحي و راه اندازي صحيح بكار ميرود و شامل نكاتي ميشود كه گاهي بي توجهي به آن باعث بهره بري كمتر و خسارت به تجهيزات الكتريكی ميگردد .

لذا پلاك خواني الكترو موتورها كمك زيادي به طراح و راه انداز براي طراحی مدار مربوطه و انتخاب صحيح كنتاكتور و بي متال و … مينمايد .

مشخصاتی که روی پلاک ها نوشته می شوند به طور معمول عبارتند از :

No: شماره ساخته شده توسط كارخانه

Type:شامل كليه مشخصات فني الكترو موتور كه در كاتالوگ كارخانه موجود بوده و يا در مكاتبه با كارخانه بايد به آن اشاره شود:

A=حداكثر جريان مجاز الكترو موتور را نشان ميدهد كه ميزان جريان نبايد بيشتر از مقدار فوق و بلكه

هميشه الكترو موتور طوري انتخاب شود كه زير مقدار فوق كار كند.

V = ولتاژ كاري الكترو موتور ميباشد كه نبايد ولتاژ بيشتر و يا كمتر به سيم پيچهاي الكترو موتور اعمال گردد

50 HZالكترو موتور بايد در فركانس 50 هرتز كار كند (برق ايران)

60 HZ الكترو موتور بايد در فركانس 60 هرتز كار كند (فركانس برق برخي كشورها)

نكته: دور الكترو موتور ها با فركانس ارتباط دارد لذا الكتروموتوری كه در فركانس 50 هرتز مثلا 1500 دور ميباشد همين الكترو موتور در فركانس 60 دورش ديگر 1500 نيست .

R.P. M= نشان دهنده دور الكترو موتور در يك دقيقه در روي شقت خروجي ميباشد.

KW=مقدار توان الكترو موتور را نشان ميدهد.

نكته : اگر روي پلاك الكترو موتوری   نوشته شده بود 380/220 V= معني ان اين است كه اين الكترو موتور در شبكه برق 110 ولت كه برخي از كشورها استفاده ميشود بايد بصورت مثلث و در كشورهاي كه ولتاژ 220ولت ( ولتاژ بين يك فاز و نول) دارند مثل ايران بايد بصورت ستاره بسته شود .

IP= ميزان حفاظت الكترو موتور در مقابل گرد و غبار و .. و طبق جدول زير ميباشد.

 

انواع حفاظتها طبق استاندارد دين 40050

P00= باز بدون حفاظت در مقابل تماس با اجسام خارجي و أب

P10= محفوظ در مقابل تماس دست و اجسام بزرگ خارجي

P11= محفوظ در مقابل تماس دست و اجسام بزرگ خارجي – محفوظ در مقابل اب

P20= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط بدون حفاظ در مقابل اب

P21= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط – ضد اب

P22= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط –محفوظ در مقابل ترشح اب بطور عمودي يا

مايل با زاويه بيشتر از 30 درجه نسبت به افق

P30= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن – بدون محافظت در مقابل اب

P31= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن – ضد اب

P32= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن – محفوظ در مقابل ترشح اب بطور عمودي يا مايل با زاويه بيشتر از 30 درجه نسبت به افق

P40= محفوظ در مقابل كليه موارد فوق

 

مکانیزاسیون نگهداری و تعمیرات الکتروموتور ها با معرفی نرم افزار ” دستیار ”

1- آنالیز جریان

2- آنالیز ارتعاشات

3- ترموگرافی

4- آنالیز مدار موتور

5- آنالیز آلتراسونیک

6- تستهای الکتریکی

7- آنالیز روغن

در روش نت براساس شرایط ( CBM ) بصورت مراحل زیر همانطوریکه ملاحظه می شود نیاز به جمع آوری و سپس تجزیه و تحلیل داده های آماری می باشد .

 

1- آماده سازی

2- طراحی

3- استقرار و اجرا

4- بهبود سیستم

 

باتوجه به حجم اطلاعات ، نیاز به تجزیه و تحلیل آنها و ارائه گزارشات متنوع و بهنگام نیاز به مکانیزه نمودن نگهداری و تعمیرات الکتروموتورها بیش از پیش احساس می شود .

خوشبختانه اخیرا” یک شرکت ایرانی موفق به طراحی نرم افزار خاص الکتروموتورهای صنعتی شده است که علاوه بر تامین نیازهای فوق کاربرد بسیاری در کارگاههای سیم پیچی کارخانجات دارد . این نرم افزار که نام آن ” دستیار ” می باشد با توجه به نیاز کارخانجات در 5 سطح تهیه شده است تا همه صنایع کشور با توجه به تعدد و تنوع الکتروموتورهای خود بتوانند با حداقل هزینه از آن استفاده نمایند .

این نرم افزار با آموزش یکروزه برنامه ریزی نگهداری و تعمیرات الکتروموتورها و نرم افزار مربوطه جهت 10 نفر و خدمات پشتیبانی ارائه می گردد .

 

کلاس عایق بندی در الکتروموتور ها

انجمن بین المللی تولیدکنندگان تجهیزات الکتریکی ( NEMA ) عایق بندی موتورها را باتوجه به درجه حرارت موتور در محیطهای مختلف کاری در چهار کلاس A , B , F , H طبقه بندی نموده است :

موتورها عموما” در کلاس F و بندرت در کلاس A کار می کنند . قبل از شروع بکار موتور ، آنها تحت تاثیر دمای محیط اطراف خود قرار دارند که ما اصطلاحا” آن را دمای محیط ” Temperature Ambient ” می گوئیم .

در NEMA برای تمام کلاسهای عایق بندی دمای ابتدایی 40 درجه سانتیگراد با یک رنج حرارتی بصورت زیر استاندارد شده است :

وقتی موتور استارت می خورد ، دما افزایش می یابد . هر کلاسی یک دمای مجاز مشخصی دارد . ترکیبی از دمای محیط و دمای مجاز معادل ماکزیمم دمای سیم پیچها خواهدبود . بعنوان مثال در کلاس F ، با فاکتور سرویس 1 ، دما به اندازه 105 درجه می تواند افزایش یابد . بنابراین داریم که :

145= 40 + 105

Hot Spot : با یک بازه مجاز حرارتی ( مثلا” 10 درجه ) گرمترین نقطه در مرکز سیم پیچ را با این نام می شناسیم .

در کلاس F این بازه 10 درجه است . بنابراین مرکز سیم پیچ دارای بیشترین دمای مجاز 155 درجه خواهد بود . دمای کاری موتور در کارآیی و طول عمر کاری موتور بسیار مهم است . تا جائیکه 10 افزایش دما از بالاترین حد مجاز باعث کاهش عمرعایق بندی موتور به اندازه 50% می شود .

کارآیی موتور ( Effeciency ) : درحقیقت همان بازده موتور است و نشان دهنده این است که چه مقدار از انرژی داده شده به موتور به انرژی مکانیکی تبدیل می شود . هرچه این عدد به یک نزدیکتر باشد کارآیی موتور بیشتر و البته قیمت موتور بالاتر است . یک موتور 30 اسب بخار با کارآیی 93.6% در مقایسه با موتور مشابهی با کارآیی 83% ، انرژی کمتری مصرف می کند . در نتیجه حرارت کاری پائین تر ، طول عمر بیشتر ، و سطح نویز کمتری خواهد داست .

ارتباط بین تعداد قطب و دور موتورهای الکتریکی

معمولا” بعد از اعداد مربوط به سایز فریم موتور اعداد مربوط به تعداد قطب موتور می آید که در موتورها ( بخصوص زیمنس ) بصورت 4AA نشان داده می شود هد که منظور عدد 4 می باشد . لازم به یادآوری است که سرعت سنکرون موتور همان سرعت میدان مغناطیسی ( استاتور ) است که با Ns نمایش می دهند . بنابراین اگر فرکانس میدان مغناطیسی را با F و تعداد قطبهای موتور را با P دهیم خواهیم داشت :

Ns – 120 F / P

Ns = ( 120 x 50 / 2 ) = 3000 RPM

با افزایش تعداد قطب ، سرعت سنکرون و درنتیجه دور موتور کاهش می یابد . بنابراین طبق مطالب گفته شده ، در فرکانس 60 هرتز و 50 هرتز ( در ایران )جداول زیر را خواهیم داشت :

فرکانس 50 هرتز
سرعت سنکرون تعداد قطب
3000 2
1500 4
1000 6
750 8
600 10
500 12

 

فرکانس 60 هرتز
سرعت سنکرون تعداد قطب
3600 2
1800 4
1200 6
900 8
720 10

 

 

بنابراین درموتور زیمنس 1LA02864SE41 تعداد قطب 4 و در نتیجه سرعت سنکرون موتور 1500 خواهد بود .

فاکتورهای مهم در کارآیی و عملکرد الکتروموتورها

فاکتورهای موثر در کارآیی و عملکرد موتور :

1- ولتاژ : افزیش یا کاهش ولتاژ از یک حد مجاز تاثیرات مخربی بر روی موتورها می گذارد . با توجه به جدول زیر داریم که :

الف – کاهش 10% ولتاژ از مقدار نامی ، موجب 20% کاهش گشتاور شده و آن سبب می شود که موتور استارت بشود و یا اینکه به دور نامی برسد .

ب- افزایش 10% ولتاژ از مقدار نامی ، باعث افزایش 20% گشتاور استارت را و این می تواند سبب آسیب دیدگی موتور بدلایل ( افزایش جریان در بار نامی و حرارت ) شود .

 

 

2- فرکانس : تغییرات در فرکانس می تواند بر روی مشخصات موتور همچون گشتاور و سرعت تاثیر گذار باشد . اگر به جدول زیر توجه فرمائید ، بعنوان مثال ملاحظه خواهید نمود که افزایش 5% در فرکانس باعث افزایش 5% در سرعت در بار نامی و کاهش 10% در گشتاور استارت باشد .

3- ارتفاع : عامل موثر دیگر ارتفاع است . موتورها معمولا” برای ارتفاع تا 1100 متر( 3300 feet ) از سطح تراز دریا درنظر گرفته می شوند . در ارتفاع بالاتر از این مقدار هوا رقیقتر بوده و حرارت براحتی انتقال نمی یابد .بنابراین فاکتور ارتفاع بر روی توان موتور تاثیر می گدارد. مثلا” در استاندارد NEMA یک موتور 50HP در ارتفاع 6600 فیت دارای توان 47HPخواهد بود . ( فاکتور ارتفاع 0.94 است . ) جدول زیر تاثیرات این فاکتور را در دمای محیط 40 درجه سانتیگراد نشان می دهد :

 

تشخیص مشخصات موتور ها از روی پلاک آنها

توضیحات شماره
علامت کارخانه ، شرکت سازنده 1
تیپ موتور ، مدل 2
نوع جریان ( مستقیم = G ) ، ( تکفاز = E ) ، ( سه فاز = D ) 3
نوع جریان مانند GEN ( ژنراتور ) ، MOT ( موتور ) 4
شماره سریال 5
نوع اتصال استاتور مانند : ستاره – مثلث 6
ولتاژ نامی 220 / 380 ولت 7
جریان نامی بر حسب آمپر 8
قدرت نامی معمولا” برحسب( KW ) 9
نوع مورد استفاده ( S ) 10
ضریب توان : کسینوس فی 11
جهت گردش : R ,L 12
دور نامی : RPM 13
فرکانس نامی : 50Hz یا 60 Hz 14
در ماشینهای مستقیم ( تحریک ) LFR – ERR ( روتور ) در ماشینهای آسنکرون 15
نوع اتصال سیم پیچ روتور 16
تحریک نامی و نیز ولتاژ روتور در حالت سکون 17
جریان تحریک نامی – جریان روتور 18
کلاس عایق مانند : Y , A , B , C , … 19
نوع حفاظت IP 20
وزن به تن در ماشینهای بیشتر از 1 تن و یا به کیلوگرم 21
توضیحات دیگر مانند وسیله خنک کننده : IC 22

 

انواع اتصال در موتورهای سه فاز

موتورهای سه فاز در شبکه سه فاز به دو روش به سه فاز شبکه وصل می شود : ستاره یا مثلث . البته تمام موتورهایی که قرار است به روش مثلث به سه فاز وصل شود از روش 2 ضربی ( ستاره – مثلث ) استفاده می کنند.

اگر بر روی تخته کلم دقیق شویم آرایش سر و ته سیم پیچی هر فاز را درست مقابل هم نمی بینیم.مثلا در فاز R سیم پیچی با ابتدای u و انتهای x مشخص شده است ولی بر روی تخته کلم درست مقابل هم قرار ندارند به آرایش تخته کلم در شکل زیر دقیق شوید:

 

علت جابجا قراردادن نام سر وته سیم پیچهای هر فاز در تخته برای راحتی در ایجاد نوع اتصال ستاره یا مثلث برای وصل به شبکه است.

موتوری که پیچیده شد چگونه باید به سه فاز مدار وصل شود؟؟

اگر تمام ته های هر سیم پیچی در هر فاز را به هم بسته و سر های هر یک را بطور مجزا به سه فاز RST وصل کنیم این اتصال از نوع ستاره است .در شکل زیر نمونه اتصال ستاره را برایتان رسم کرده ام.

توصیه می کنم تمام موتورهایی که در کارگاه برای کار تمرینی انجام می دهید حتما با این اتصال به شبکه وصل کنید . علت این کاررا در ادامه توضیح خواهم داد.

ناگفته نماند نامگذاری فازها امری قراردادی است و فرقی نمی کند که شما سر هایuvw را به هر یک از فازهای RST به شکل متفاوت وصل نمایید.

اما اگر از شش سیمی که بعد از سیم پیچی از موتور بیرون می آید را به شکل زیر به هم بسته و از سه اتصال بوجود آمده هر یک را به سه فاز شبکه وصل کنیم این اتصال از نوع مثلث است. یعنی u ورودی یا سر سیم پیچی در فاز R را با z انتهای سیم پیچ در فاز T به هم وصل کرده در ادامه v به عنوان ورودی فاز S را با x انتهای سیم پیچ در فاز اول به هم اتصال داده و نهایتا w به عنوان ورودی برای فاز T را با y همان انتهای سیم پیچی در فاز S را به هم می بندیم . قطعا سه اتصال خواهیم داشت که اگر این سه بطور مجزا به سه فاز شبکه وصل شود این اتصال از نوع مثلث است.

در شکل زیر نمونه ای از اتصال مثلث را رسم کرده ام که ملاحظه می کنید:

فرق بین اتصال ستاره و مثلث چیست ؟

ابتدا سعی می کنيم آنچه که در مورد هر یک از اتصالها اتفاق می افتد را به صورت تشریحی و کالبد شکافانه برایتان نشان دهيم. در اتصال ستاره آنچه که اتفاق می افتد به قرار زیر است:

انتهای تمام سیم پیچی که به هم وصل شده اند را در وسط قرار داده ام xyz , و آن را با علامت پیکان مشخص نموده ام.هر یک از سیم پیچ ها که با اختلاف 120 درجه نسبت به هم در استاتور قرار گرفته اند نیز به همان اختلاف بصورت شمایی رسم شده اند. آنچه ازاین شکل برداشت می شود این است که این مجموعه از روابط برداری تبعیت کرده و ما به حقایق جالبی خواهیم رسید قبل از این که محاسبات برداری را انجام دهم لازم است به آگاهی شما برسانم که در موتورهای سه فاز ما یک جریان و ولتاز خطی داریم که مربوط به شدت جریان و ولتاز ورودی(بین دو فاز) در مسیر کابل به داخل موتور است ویک ولتاژ و شدت جریان فازی هم داریم که مربوط به شدت جریان داخل سیم پیچ و ولتاژی است که در دوسر سیم پیچها وجود دارد.

در اتصال ستاره می توان طبق شکل vp1 و vp2 را به عنوان دو برداری در نظر گرفت که اگر برآیند آنها را حساب کنیم برابر با برداری شودکه با نام VL از فاز R در حال ورود به موتور می باشد.برای محاسبه برآیند این دو بردارکافی است به موازات هر یک از بردارهای VP1 و VP2 خطی رسم کنیم تا در نقطه ای یکدیگر را قطع کنند. برآیند این دو بردار از نقطه تقاطع اول شروع شده تا به محل تقاطع اخیر ختم می شود . و طبق قانون بردار خواهیم داشت:

VL2 = VP12 + VP22 +2 VP1VP2 . COS 120

چون مقدار VP1 و VP2 با هم برابر است می توان نوشت :

VL2 = 3VP2 . 2. COS 120

کسینوس 120 درجه 2/1 است بنابراین رابطه به شکل زیر در می اید.

VL2 = 3VP2 . 2. 1/2 VL2 = 3VP2 VL = VP

ولتاز خطی در اتصال ستاره برابر ولتاژ فازی است و جریان خطی وفازی در این نوع اتصال باهم برابرند.به بیان ساده تر :

vL = vp

IL = Ip

اما در مورد اتصال مثلث شکل به صورتی در می آید که می بینید.

در اتصال مثلث ولتاز خط با ولتاژ فازی با هم برابر ولی جریان خطی رادیکال سه برابر جریان فازی است.

VL = VP IL = √3 . IP

همانطور که می بینید جریان خطی یا همان جریانی که از مسیر کابلها وارد موتور می شود در اتصال مثلث رادیکال سه برابر جریان فازی ( مقدار جریانی که داخل سیم پیچ در حال عبور است) می باشد . یعنی اگر درموتوری در داخل سیم پیچ مقدار IP برابر با 3 آمپر باشد و اتصال از نوع مثلث باشد جریان خطی آن برابر با :

IL = √3 . IP IL = √3 . 3 IL = 5.19 A

خواهد داشت که این مقدار آمپر در لحظه راه اندازی برای موتور در نقاط حساس مثل اتصالها – کنتاکتها – ترمینالها خطرناک بوده باعث خرابی و سوختن قطعات می گردد بنابراین در راه اندازی موتورهایی که می توانند به شکل مثلث کار کنند راه اندازی به شکل دو ضرب انجام می شود. یعنی از کلید های ستاره مثلث استفاده شده ابتدا در لحظه راه اندازی کلید برروی اتصال ستاره است و بعد از را ه افتادن موتور کلید را به محل اتصال مثلث می چرخانیم.

با توجه به موارد ذکر شده در بالا چند نکته را همیشه به خاطر داشته باشید:

1- اگر موتور شما تمرینی است و آن را در کارگاه پیچیده اید حتما با اتصال ستاره راه اندازی کنید و مطلقا از مثلث استفاده نکنید.

2- اگر موتوری سیم پیچی آن برای کارکرد در حالت مثلث است ابتدا با ستاره بعد به حالت مثلث در آورید.

3- موتوری که برروی پلاکش در بخش ولت نوشته شده باشدV220 /380 این موتور در شبکه برق ایران فقط با ستاره کار می کند . ولی اگر برروی پلاک موتوری در بخش ولت عدد V380 /660 قید شده باشد این موتور برای اینکه توان واقعی خود را داشته باشد باید بااتصال مثلث کار کند اما گفتم که ابتدا با ستاره راه اندازی شده بعد به حالت مثلث درمی آید. هر چند که می توان از این نوع موتورها به شکل ستاره هم استفاده نمود.

4- اگر بخواهیم از یک سوم قدرت موتوری که سیم پیچی آن براساس اتصال مثلث است استفاده کنیم می توانیم از اتصال ستاره استفاده نماییم.

5- همانطور که جریان و ولتاز خطی و فازی داریم قطعا توان فازی و خطی هم خواهیم داشت معمولا توان اولیه یا دریافتی موتورها از رابطه ای استفاده می شود که در آن از ولتاز و جریان خطی استفاده می شود.که در حالت ستاره به شکل زیر است:

P = √3 . VL . IL . COS φ

این توان رابا نام توان اکتیو می شناسیم واگر بخواهیم همین توان را براساس ولتاز و جریان فازی بیان کنیم رابطه به شکل زیر در می آید.ِ

P = 3Vp . IP . COS φ

سیم پیچی

معمولا در الکتروموتور ها تعداد شيارها را با علامت z نشان می دهند.به خوبی می دانيم که فضايی که کلافهای سيم پيچی در آن قرار دارد را استاتور گويند.وبخش گردنده را روتور می نامند. الکتروموتوری که در بخش استاتور دارای ۲۴ شيار باشد آنرا به شکل 24=z نشان می دهند.

نکته مهم بعدی اين است که موتور های ۳ فاز که برق تغذيه کننده موتور از سه فاز R-S- T می باشدبرای هر يک از فاز ها به صورت مساوی تعداد شيارهايی اختصاص می يابد که هريک از فازها به اندازه ۱۲۰ درجه الکتريکی با هم فاصله دارند.

٬٬٬ همانطور که قبلا مشاهده کرديد بين فازهای ورودی در موتورهای ۳فاز ۱۲۰ درجه الکتريکی فاصله وجود دارد .برای درک موضوع توضيح زير لازم است.در موتورهای القايی سه فاز بين روتور واستاتور هيچگونه ارتباط الکتريکی وجود ندارد و آنچه که باعث گردش روتور می شود اگر بخواهيم بطور کاملا خلاصه بگوييم بايد عرض کنيم اثر شار مغناطيسی که توسط سيم پيچها به کمک جريان ورودی در استاتور ايجاد می شود عامل گردش خواهد بود. جريان ورودی در کلافهای استاتور ايجاد فضای مغناطيسی ميکند .

در واقع هر يک از شيار ها به يک قطب آهنربايی تبديل می شود. حال اگر محيط دوار استاتور را ۳۶۰ درجه منظور کنيم اگر اين مقدار بر تعداد شيارهای استاتور مثلا ۲۴ تايی تقسيم کنيم و آن را به تعداد جفت قطبهای فضای داخلی استاتور ضرب کنيم زاويه الکتريکی هر شيار قابل محاسبه خواهد بود. αez .

تعداد قطبهای آهنربايی که در داخل استاتور ايجاد می شود با نوع سيم پيچی ونوع کلاف زنی قابل تغيير وکنترل خواهد بود. مثلا طوری کلافها را جا بزنيم که موتور به شکل ۴ يا ۲ يا ۶ يا ۸ قطب (N يا S ) کار کند. تعداد زوج قطبها را با P نمايش می دهند. α ez=360/24*P

برای سیم پیچی موتورهای سه فاز یا تک فاز همان طور که قبلا گفته شد باید یک سری اطلاعات فنی را درباره موتوری که در دسترس داریم بدست آوریم.این اطلاعات معمولا از روی پلاک موتور بدست می آید .

(البته هر چند که می توان از راهکارهای دیگری به این مهم رسید. مثلا اگر موتوری خالی بدون سیم و نیز بدون پلاک برای ما بیاورند محاسبه نوع سیم پیچی این موتورها نیز امکان پذیر است. در این موتور ها با در نظر گرفتن و نیز یادداشت اطلا عات فیزیکی موتور مثل قطر داخلی استاتور Ds و ارتفاع یوغ Hc و طول هسته Ls ونیز محاسبه مقدار شار مغناطیسی Bmو مقدار اندکسیون یوغ Bc و لحاظ ضریب K می توان مقدا رتوان ثانویه را بدست آورد.)

اندازه گیری یوغ استاتورو نقش ان

یکی از عوامل مهم در سیم پیچی موتور ها اندازه گیری مقدار یوغ استاتور است . اگراز محیط بیرونی استاتور را که به پوسته یا همان بدنه مماس شده تا ابتدای لبه قاعده شیارها رابصورت شعاعی اندازه بزنیم این مقدار برابر با اندازه یوغ خواهد بود. یادمان باشد که مقدار بر اساس میلی متر می باشد. این مقدار را با Hs نشان می دهیم.نمایی از یوغ در بریده ای ازاستاتورکه با پیکان دو سر مشخص شده را می بینید.

در ادامه باید اندازه قطر داخلی استاتور را نیز برداریم. اگر استاتور را دایره فرض کنیم اندازه گیری قطر آن بطور عملی کاری بسیار ساده خواهد بود. این مقدار هم براساس میلی متر و به شکل Ds نمایش داده می شود.

حال به این نکته توجه کنیدکه اندازه یوغ فضایی است که شار مغناطیسی در ان جریان یافته و در فضای استاتور مدار مغناطیسی کامل می شود.کمی به این رابطه توجه کنید.

Hc = Bm . Ds / Bc .P

در این رابطه Hc همان ارتفاع یوغ است که شما اندازه زده اید. D هم مقدار قطر داخلی است که این کمیت راهم پیدا کرده اید. Bm مقدار شاری است که توسط استاتور به هنگام کار در فضای داخلی آن ایجاد می شود البته مقدار ماکزیمم آن بر اساس مقدار D در نموداری رسم شده است . در این نمودار مقدار ماکزیمم شار برای قطبهای مختلف 2 – 4 و 6 قطب را نشان می دهد. Bc مقدار شار داخل یوغ است که معمولا برابر با 5/1در نظر می گیرند. p تعداد جفت قطبهای موتور است.مثلا موتوری که 4 قطب است مقدار p برابر با 2 خواهد شد.

نکته بسیار مهم در این رابطه این است که تعداد قطبهای موتور با ارتفاع یوغ رابطه عکس دارد. یعنی هرچه ارتفاع بزرگتر باشدP کوچکتر و موتور دارای سرعت بیشتری است.

نمودار مربوط به شار مغناطیسی Bm را می توانید در ادامه ملاحظه کنید.

در این نمودار منحنی قرمز رنگ برای موتورهای 2 قطب یعنی 2p=2 منحنی مشکی رنگ برای موتورهای 6 قطب و منحنی آبی رنگ هم برای موتورهای 4 قطب در نظر گرفته شده است.

حال شما با کمیتهای که در دست دارید Hs ( مقدار ارتفاع یوغ) Ds ( مقدار قطر داخلی استاتور ) و Bc ( ماکزیمم شار داخل یوغ که حدود 5/1 است) و نیز مقدار شار واقعی یعنی Bm( از نمودار مربوطه) می توانید تعداد قطبهای موتوررا محاسبه نمایید.

مثال:استاتور موتوری داریم که دارای یوغ 30 میلی متری واندازه قطر 110 میلی متر می باشد.اگر مقدار اندکسیون داخل یوغ را 1.5 فرض کنیم تعداد قطبهای این موتور را طبق جدول و رابطه یوغ حساب کنید؟

Ds=110 Hc=30 Bc=1.5

با توجه به داده هابه جدول داده شده نگاه می کنیم منحنی که بیشترین شار را برای این قطر نشان می دهد را انتخاب می کنیم.منحنی آبی رنک بیشترین مقدار را نشان میدهد. از روی عدد 110 برروی محور افقی خط عمودی رسم می کنیم .قطعا در جایی منحنی افقی را قطع خواهد کرد.از نقطه بدست آمده عمودی به سمت محور عمودی منحنی رسم مینماییم.عددی که بدست می اید حدود88/. می باشد.حال طبق رابطهHc = Bm . Ds / Bc .P مقدار p بدست می اید.

p=Bm . Ds / Hc . Bc p=0.88 . 110 / 1.5 . 30 p=2 2p = 4

موتور چهار قطبی است

اما ما مبنا را بر این قرار داده ایم که موتور حال حاضر ما دارای پلاک بوده وقرار است مشخصات آنرا بدست آوریم. گزینه های روی پلاک را (مواردی که کاربردی تر هستند ) را توضیح می دهیم.

بحث پلاک خوانی

1- MARK : در این بخش نشانه یا آرم کارخانه تولید کننده البته در بالای پلاک وبا اندازه ای بزرگتر از سایر گزینه ها درج می شود. اهمیت این گزینه زمانی مهم جلوه می کند که لازم است درباره اعتبار کارخانه تولید کننده بدانیم . برخی تولید کننده ها ی الکتروموتور از اعتبار فوق العاده ای در زمینه تولید موتور های مرغوب برخوردارند . معمولا در این بخش نام کارخانه هم درج می شود.

2- TYPE : در این بخش بطور معمول موتور را از جهت کارکرد در برق AC یا برق DC معرفی می کند.هر چند که در برخی موتور ها این گزینه شامل کدها و اعدادی می شود که نماینگرمشخصات فیزیکی موتورخواهد بود.

3- FRAM : در این قسمت اعدادی قید می شود که آنها توسط انجمهای ملی تولید کننده قابل شناسایی است که بیشتر شامل قالبهای اندازه 42 -46 و56 می باشد.

4- Hp : در مفابل آن عددی قید می شود که نماینگر مقدار توان خروجی موتور می باشد. این توان بر اساس اسب بخار است و هر اسب بخار هم حدود 736 وات می باشد.

5- Ph : چند فاز بودن موتور را عنوان می کند برای موتور های سه فاز عدد 3 و برای موتور های تک فاز عدد 1 قید می گردد. ( البته ناگفته نماند که می توان با راهکارهایی بسیار ساده از موتور سه فاز به جای موتور تک فاز هم استفاده نمود . )

6- RPM : مخفف ROUNT PER MINUTE ( یعنی دور در دقیقه) می باشد. این عدد مقدا رسرعت روتور را به ما می دهد. قطعا مقدار سرعت روتور از مقدار سرعت سنکرون در فضای استاتور کمتر است .البته این کاهش هم چندان زیاد نیست . من معمولا با دیدن این عدد به مقدار سرعت استاتور می رسم و براحتی تعداد قطبهای موتور را حساب می کنم .کافیست شما مقادیر سرعت سنکرون را در فرکانس برق 50 هرتز بدانید

سرعت سنکرون اگر به مقدار 3000 دور در دقیقه باشد این موتور در فضای استاتور خود ایجاد 2قطب متفاوت N و S نموده است بنابر این اگر تعداد قطبها را با P2 نشان دهیم برای این سرعت در این موتور 2P=2 خواهد بود. خوب اگر موتور به شما دادند که برروی پلاکش عدد 2850 دور بوده این سرعت روتور است که به دلیل لغزش از مقدار دور سنکرون کاهش یافته است.

از مقدار لغزش صرف نظر کرده و از رابطه Ns=60 * f/p تعداد قطبهای موتور را حساب می کنیم. در این رابطه Ns همان سرعت سنکرون است که الان مقدار آنرا داریم (3000) و f مقدار فرکانس برق شهری است که در ایران 50 هرتز است.( لازم به یاد آوری است در این رابطه علامت * نشانه ضربدر و علامت / نشانه تقسیم می باشد.) با جایگزینی اعدادی که داریم مقدارP بدست خواهد آمد.P=1 و 2Pبرابر با 2 خواهد شد. پس وجود RPM بر روی پلاک خیلی از مسایل بربوط به سیم پیجی را برای ما حل خواهد کرد.

7- HZ یا SYCLES : در این بخش مقدار فرکانس برق شهری که موتور بر اساس آن طراحی شده است را نشان می دهد. برای موتورهای شبکه ایران این عدد 50 است.

8- HOUSING : در این بخش به ما گفته می شود که موتور باید در محیط بسته یا رو باز کار کند .

9- Volt : از جمله مهمترین بخش در امر پلاک خوانی توجه به این گزینه می باشد . در واقع اگر کسی از اعداد روی پلاک در این بخش اطلاعاتی نداشته باشد باید با اطمینان گفت که چیزی از موتور نمی داند

معمولا در موتور های سه فاز در بخش ولت دو عدد قید می شود که به وسیله خط کسری یا ممیز از هم جدا می شوند مثلV220/380 و یا V115/230 . این اعداد بیانگر این موضوع هستند که این موتور در چه شبکه با چه ولتازی کار می کند . برق شبکه معمولا در ولتاز های 115 – 230- 440 و 660 می باشد.

از دو عددی که بر روی پلاک ارائه شده عدد کمتر همان ولتازی است که باید از شبکه به سر هر فاز از سیم پیچی موتور داده شود. اگر ولتاز شبکه از مقدار راهنمایی شده بیشتر بود الزاما این موتور باید بصورت اتصال ستاره کار کند . و اگر موضوع بر عکس بود یعنی ولتاز شبکه از عدد اول ارائه شده کمتر بود می توان موتور را هم مثلث و هم ستاره به شبکه وصل نمود. ( به خاطر داشته باشید که اتصال های ستاره و مثلث بحث های بسیار ساده و راحتی هستند.

در شبکه برق ایران که ولتاز400/230 داریم موتوری که بر روی پلاکش اعداد 660/380 قید شده باشد این موتور برای این که بتواند توان واقعی خود را داشته باشد باید بااتصال مثلث به شبکه وصل شود و اگر بخواهیم از 3/1 قدرت آن استفاده نماییم باید از اتصال ستاره استفاده کنیم.

10- Amps : مقدار جریانی که موتور زیر باردر ولتازوجریان اسمی خواهد کشید دراین بخش قید میگردد.

 

الکتروموتور وعيب يابي آن

موتور هاي الکتريکي (آسنکرون-يونيورسال-قطب چاکدار ) عيب يابي ورفع عيب موتور هاي مذکور .
موتور ها مهمترين اجزايي هستند که در لوازم برقي گردنده بکار مي روند.موتور ها انرژي الکتريکي را به انرژي مکانيکي تبديل مي کنند. الکتروموتور ها را مي توان به سه دسته کلي تقسيم کرد:
1- موتور هاي آسنکرون
2 – موتور هاي يونيورسال
3- موتور با قطب چاکدار
1- موتور هاي آسنکرون:
که با برق متناوب کار مي کنند از دو قسمت روتور واستاتور ساخته شده اند.با روشن شدن موتور سيم پيچ هاي درون شيار هاي استاتور يک ميدان مغناطيسي دوار بوجود مي آورند که اين ميدان برروتور که قسمت گردنده موتور وداراي محور انتقال حرکت مي باشد نيز اثر گذاشته ودر آن خاصيت مغناطيسي بوجود مي آيد .به هر حال با بوجود آمدن قطب هاي مغناطيسي هم نام وغيرهم نام عمل جذب ودفع انجام شده که باعث حرکت چرخشي روتور مي گردد.براي راه اندازي موتور ها از حالت سکون روش هاي مختلفي بکار مي برند که مهمترين آن ها عبارتند از:
الف- آسنکرون با راه انداز غير خازني (کلاجي ) در اين موتور به غير از سيم پيچي هاي اصلي يک سري سيم پيچ کمکي نيز قرار دارد که ميدان مغناطيسي ديگري با فاصله زماني با ميدان مغناطيسي اصلي بوجود مي آورد.که باعث چرخش پرقدرت تر موتور مي گردد. پس از اين که سرعت موتور به 75 درصد سرعت اسمي رسيد کلاج که تحت تاثير نيروي گريز از مرکز کار مي کند به عنوان يک کليد عمل کرده وسيم پيچ کمکي را از مدار خارج مي کند.
ب – آسنکرون با راه انداز خازن موقت – اين موتور ها داراي علامت اختصاري CSMمي باشند وداراي يک خازن الکتروليتي با ظرفيت حدود 200 الي 500 ميکرو فاراد است که باسيم پيچ کمکي بطور سري بسته شده وهر دوي آنها باسيم پيچ اصلي موازي بسته مي شوند. خازن وسيم پيچ کمکي يک اختلاف فاز ودو ميدان مغناطيسي بوجود مي آورد که باعث چرخش موتور مي گردد. در اين موتور نيز کليد گريز از مرکز سيم پيچ کمکي را از مدار خارج مي کند.
ج – آسنکرون با راه انداز خازن موقت وخازن دايم.(با علامت اختصاري TCM) – يکي از خازن ها پس از راه اندازي از مدار خارج شده وخازن ديگر در حالتي که با سيم پيچ کمکي سري مي باشد در مدار باقي مي ماند.
د – آسنکرون با راه انداز خازن دايمي ( PSCM) در اين موتور ها که داراي قدرت کم تري نسبت به موتور هاي قبلي هستند از يک خازن که با سيم پيچ کمکي سري بسته شده است استفاده شده و کليد گريز از مرکز ندارند بنابر اين خازن به همراه سيم پيچ کمکي هميشه در مدار باقي است.

شناسايي سيم پيچ هاي اصلي وکمکي :

1- سيم پيچ هاي اصلي در زير شيار ها و سيم پيچ کمکي در رو قرار دارند.
2- سطح مقطع سيم هاي کمکي هميشه از سيم هاي اصلي کمتر است.
3- سيم پيچ کمکي داراي مقاومت بيشتري (اهم بيشتر ) نسبت به سيم پيچ اصلي است وضمنا” خازن با سيم پيچ کمکي سري شده است.
عيب يابي موتور هاي آسنکرون – معيوب شدن موتور ها يا مربوط به قطعات برقي مثل سيم پيچ ها وخازن است يا مربوط به قطعات مکانيکي مثل بلبرينگ و بوشن ها .

عيب يابي قطعات برقي :

عيب1- موتور اصلا”روشن نشده و جرياني از مدار عبور نمي کند.
علت1 -جايي از مدار قطع است.
رفع عيب1- با آوامتر تمام مدار شامل پريز،دوشاخه ،سيم هاي رابط،کليدها واتصالات در تخته کلم موتور را بر رسي وعيب مربوطه را بر طرف مي نماييم.
عيب2- موتور اصلا”روشن نشده وجرياني از مدار عبور نمي کند.
علت2 -سوختن فيوز.
رفع عيب2-ابتدا علت سوختن فيوز که مربوط به اتصالي مي باشد را بررسي نموده پس از آن به تعويض فيوز مي پر دازيم.
عيب3-موتور پس از روشن شدن خيلي زود داغ مي شود.
علت3-موتور نيم سوز است.
رفع عيب3- در هر کدام از سيم پيچ هاي کمکي واصلي ميتواند اتصال حلقه ويا اتصال کلاف به کلاف بوجود آمده باشد.بنابر اين مسير جريان الکتريکي کوتاه شده در نتيجه ميدان مغناطيسي مناسب براي گردش بوجود نمي آيد وباعث داغي موتور ميشود.موتور هاي نيم سوز جريان بيشتري نسبت به موتور هاي سالم مشابه خود دريافت مي کنند. براي رفع عيب در صورتي که محل اتصالي مشخص باشد وبتوان به نحوي آن را عايق نمود اقدام کرده ودر غير اين صورت موتور بايد دو باره سيم پيچي شود.
عيب4- موتور پس از روشن شدن خيلي زود داغ مي شود.
علت4- زياد بودن بار موتور.
رفع عيب 4- هر موتوری   داراي توان مکانيکي مشخص است در صورتي که بيش از توان مربوطه از موتور نيرويي خواسته شود جريان بيشتري از سيم ها عبور مي کند که با سطح مقطع وتعداد دور آن ها همخواني ندارد وباعث گرما در موتور و آسيب ديدن آن خواهد شد .براي رفع عيب بايد بار موتور را کم نموده واز کار مداوم آن خود داري کرد.
عيب5- موتور پس از روشن شدن خيلي زود داغ مي شود وزير بار مي خوابد.
علت 5- عمل نکردن کليد گريز از مرکز .
رفع عيب 5 – علاوه بر جريان در يافتي توسط سيم پيچ اصلي ،سيم پيچ کمکي نيزچون از مدار خارج نمي شود جريان دريافت مي کند .براي اطمينان از صحت عمل کرد کليد گريز از مرکز بايد به صداي کنتاکت آن در حالت دور گرفتن موتور وهمچنين از دور افتادن آن گوش کرد .براي رفع عيب بايد کليد سرويس ويا تعويض شود.
عيب 6- با روشن کردن موتور صداي زيادي شنيده مي شود ولي به گردش در نمي آيد.
علت 6- خرابي کليد گريز از مرکز .
رفع عيب 6- درصورتي که کنتاکت هاي کليد در حالتي که موتور خاموش بوده وصل نشده باشد.درزمان شروع بکار ،سيم پيچ راه انداز در مدار قرار نگرفته وطبيعتا”موتور بگردش نمي افتد.براي رفع عيب کليد را با آوامتر امتحان ودر صورت معيوب بودن تعويض مي نماييم.
عيب 7- با روشن شدن موتور صداي زيادي شنيده مي شود ولي به گردش در نمي آيد.
علت 7 – قطعي سيم پيچ اصلي يا کمکي .
رفع عيب 7 – به کمک آوامتر هر دو مدار را امتحان ودر صورت مشخص بودن محل پارگي ،آن را تعمير مي نماييم.
عيب 8 – با روشن شدن موتور صداي زيادي شنيده مي شود ولي به گردش در نمي آيد.
علت 8 – نيم سوز بودن يا سوختگي موتور .
رفع عيب 8 – موتور سريعا”داغ شده وجريان زيادي مي کشد همچنين بوي سوختگي ويا دود از مشخصه هاي آن است.رفع عيب سيم پيچي مجدد است.
عيب 9 – با روشن کردن موتور صداي زيادي شنيده مي شود ولي به گردش در نمي آيد.
علت 9 – خرابي خازن.
رفع عيب 9 – خازن ها به منظور راه اندازي موتور بکار رفته اند خازن را مطابق با مطالبي که در مورد عيب يابي خازن ها گفتيم آزمايش نموده در صورت نياز آن را تعويض مي کنيم.
عيب 10 – با روشن کردن موتور فيوز عمل کرده مدار قطع مي شود.
علت 10 – اتصال کوتاه در مدار اصلي موتور .
رفع عيب 10 – دوشاخه ،سيم هاي رابط وجعبه اتصالات موتور را بررسي کرده در صورت پيدا کردن محل اتصالي آن را مرتفع مي نماييم.
عيب 11 – با روشن کردن موتور فيوز عمل کرده مدار قطع مي شود.
علت 11 – سوختگي کامل موتور
رفع عيب 11 – با مشاهده استاتور وسيم پيچ هاي مربوطه عيب حاصل تاييد گرديده وبراي رفع آن بايد موتور سيم پيچي گردد.
عيب 12 – با روشن کردن موتور فيوز عمل کرده مدار قطع مي شود.
علت 12 – اتصال کوتاه در خازن
رفع عيب 12 – اگر با جدا کردن خازن از مدار و به برق زدن موتور فيوز ديگر عمل نکرد عيب از خازن است وبايد آن را تعويض نمود.

عيب يابي قطعات مکانيکي.

عيب 1 – محور موتور چه در حالت روشن وچه در حالت خاموشي به سختي حرکت مي کند.
علت 1 -بطور کلي خرابي بلبرينگ ها وياطاقان هاي دو سر محور موتور .
رفع عيب 1 – خرابي بلبرينگ ها شامل الف – ترک برداشتن حلقه هاي بلبرينگ،ترک بر داشتن ساچمه ها و غلطک ها .ب – بوجود آمدن حفره وشيار در سطح داخلي حلقه ها که علت آن وجود ذرات سخت بين ساچمه وحلقه مي باشد.ج – گريپاژ (عدم چرخش ساچمه ها ) که ناشي از کثيفي و سخت شدن گريس بلبرينگ مي باشد. د – فرسودگي وپوسيدگي – که به علت جازدن نادرست بلبرينگ ونفوذ رطوبت وعدم گريس کاري مناسب بوجود مي آيد. براي تشخيس عيوب گفته شده بلبرينگ را از نظر ظاهري مشاهده ولقي بين حلقه وساچمه را امتحان مي کنيم . همچنين با چرخش بلبرينگ اگر صداي غير عادي شنيده شود دليل برخرابي آن مي باشد که بايد تعويض گردد.
عيب 2 – گاهي اوقات محور موتور با صداي زيادي مي چرخد.
علت 2 – چرخش حلقه بيروني بلبرينگ در جاي خود.
رفع عيب 2 – جازدن نادرست بلبرينگ وعدم گريس کاري مي تواند باعث لقي بلبرينگ در جاي خود شود . رفع عيب-تعويض بلبرينگ در صورت معيوب بودن بوش زدن وتراش کاري جاي آن يا تعويض دري موتور.
2-موتور هاي يونيورسال
اين موتور ها که هم با جريان متناوب وهم با جريان مستقيم کار مي کنند از دو قسمت اصلي تشکيل شده اند:
الف:قطب ها (بالشتک ها )
ب – آرميچر
در اين موتور ها ميدان مغناطيسي قطب ها بر خلاف موتور هاي آسنکرون دوار نيست وسيم پيچ آرميچر که قسمت گردنده موتور است با سيم پيچ قطب ها سري بسته شده است . پس از عبور جريان از مدار فوق خطوط قواي مغناطيسي قطب ها با خطوط قواي آرميچر عکس العمل نشان داده وباعث گردش موتور مي شود .سرعت اين موتور ها بالا بوده وخيلي سريع به سرعت نهايي مي رسند. از اين موتور ها در اکثر لوازم برقي خانگي مثل چرخ گوشت ،آب ميوه گيري ،هم زن ،آسياب و… استفاده مي شود. براي برقراري ارتباط قطب ها با آرميچر که گردان مي باشد از قطعه اي بنام کلکتور استفاده مي شود . کلکتور از تيغه هاي مسي کنار هم تشکيل شده است که به شکل استوانه روي محور قرار دارد . تيغه ازهمديگر واز محور آرميچر بوسيله ميکا عايق شده اند وسيم پيچ هاي داخل شيار آرميچر به وسيله پيچک ها به يکديگر وصل مي شوند. دو قطعه ذغال به همراه فنر پشت آن ها ارتباط قطب ها با کلکتور را ميسر مي سازد.

عيب يابي موتور هاي يونيور سال :

عيب 1 – موتور روشن نمي شود.
علت 1 – نبودن برق.
رفع عيب 1 – پريز ،دوشاخه وسيم رابط را با آوامتر آزمايش نموده ورفع عيب مي کنيم.
عيب 2 – موتور روشن نمي شود.
علت 2 – کوتاه شدن ذغال ها.
رفع عيب 2 – چون ذغال ها جزيي از مدار سري موتور مي باشد.با کوتاه شدن آن ها ممکن است مدار قطع گردد وموتور روشن نشود با تعويض ذغال رفع عيب مي شود در صورت نبودن ذغال در اندازه مورد نظر مي توان از ذغال بزرگ تر استفاده کرده وبا سوهان آن را به اندازه دلخواه در آورد.
عيب 3 – موتور روشن نمي شود.
علت 3 – خرابي فنر ذغال ها
رفع عيب 3 – به منظور درگير بودن هميشگي ذغال با کلکتور از قطعه اي فنر در پشت ذغال استفاده مي شود گاهي در اثر رطوبت ويا کار زياد خاصيت خود را از دست داده ومدار قطع مي گردد. باتعويض فنر رفع عيب مي شود

روشهای مختلف راه اندازی موتورهای آسنكرون

موتورهای آسنكرون با توجه به قدرت و ولتاژ آن به طرق مختلف راه اندازی ميشوند و با توجه به اينكه موتور در لحظه شروع به كار جريان زيادی ميكشد و اين جريان زياد علاوه بر اينكه به خود موتور صدمه ميزند به مصرف كننده های ديگری كه از اين خط تغذيه می كنند لطمه زده و كار آنها را مختل می سازد.
بنابراين برای كم كردن جريان شروع به كار موتور بايد چاره ای انديشيد؟؟
معمولاً به روشهای زير راه اندازی ميشود در نتيجه جريان راه اندازی‌ كم ميشود :
1. به طور مستقيم
2. توسط كليد يا مدار ستاره – مثلث
3. توسط كمپانساتور
4. راه اندازی بوسيله اضافه كردن مقاومت در مدار روتور
5. راه اندازی بوسيله داخل كردن مقاومت در مدار استاتور
1- راه اندازی موتور به طور مستقيم : برای‌ موتورهايی كه بزرگ نيستند و‌ آمپر زيادی از شبكه نمی كشند بوسيله يك كليد سه قطبی به شبكه متصل ميشوند .
2-راه اندازی ستاره – مثلث : ابتدا ولتاژ اوليه را كه بر هر فاز متصل ميشود ،‌ را كم مى كنيم سپس وقتي كه موتور به دور نرمال خود رسيد ولتاژی كه به هر فاز می رسد را زياد می كنيم .
بنابراين در لحظه اول كليد به حالت ستاره بوده يعنی ولتاژ دو سر هر فاز به u/√3 تقليل می يابد در نتيجه موتور با توان 3/1 توان نامی خود كار می كند .
استعمال كليد روی انواع موتورها با روتور قفسه ای يا روتور سيم پيچی امكان پذير است . ولی در موتورهايی كه با بار زياد كار می كنند از كليد برای راه اندازی استفاده نمی شود . چون گشتاور مقاوم بار زياد است .
3-راه اندازی توسط كمپانساتور : اين وسيله راه اندازی كه اتوترانسفورماتور كاهنده است بين موتور و شبكه قرار می گيرد . اين طريق راه اندازی به دليل اينكه جريان شروع به كار و گشتاور شروع به كار هر دو به يك نسبت پايين می آيند خيلی خوب است . ولی چون هزينه آن گراناست فقط در موتورهايی كه قدرت زياد دارند استفاده می شوند.
4-راه اندازی موتورهای قفسه ای بوسيله قرار دادن مقاومت سر راه استاتور : برای جلوگيری از عبور جريان زياد در موقع راه اندازی موتور ميتوان مقاومت هايی به طور سری سر راه سيم پيچی هایموتور قرار دارد . و به تدريج كه موتور دور می گيرد دسته مقاومتهای راه انداز را به طرف چپ حركت داده در اين صورت كم كم مقاومتها از سر راه مدار خارج ميشود.
اين طريق راه اندازی به دليل تلفات انرژی در مقاومتها زياد و نيروی كشش در لحظه شروع به كار كم ، استعمال كمی دارد.
5-راه اندازی موتورهای آسنكرون با روتور سيم پيچی با قرار دادن مقاومت سر راه روتور : تمام مقاومتهای راه انداز را سر راه سيم پيچی روتور قرار داد . بدين وسيله مقاومت مدار سيم پيچی روتور را به حداكثر مقدار خود ميرسانند و سپس استاتور را به شبكه برق وصل می كنند . مقاومت روئستای روتور به تدريج از مدار خارج ميشود .

پيدا كردن سرسيم های موتور آسنكرون UVW-XYZ

آيا می دانيد اگر موتور آسنكرونی سه فازی داشته باشيم و 6 سر سيم ، كه سر سيم های آن مشخص نيست ، چه بايد كرد ؟؟
اگر اين سر سيم ها اشتباه وصل شود در عملكرد موتور چه تغييری حاصل می شود ؟

تعيين آرايش كلافها در شيار :

موتورهای سه فاز از سه سيم پيچ تشكيل شده كه هر كدام از اين سيم پيچها 3/1 شيارهای استاتور را اشغال می كند. اين سيم پيچها به فاز اول (R) ، فاز دوم (S) ، فاز سوم (T) شناسايی می شوند.
§ سيم پيچی كه از فاز Rتغذيه می كند شروع سيم پيچی را (U ) و انتهای آنرا با ( X )
§ سيم پيچی كه از فاز S تغذيه می كند شروع سيم پيچی را (V ) و انتهای آنرا با ( Y )
§ سيم پيچی كه از فاز T تغذيه می كند شروع سيم پيچی را (W ) و انتهای آنرا با ( Z )

برای يافتن سر سيم ها‌ :

ابتدا بايد دو سر هر كلاف را پيدا كنيد از مولتی متر يا هر روش ديگری كه می شناسيد .( يك سر مولتی متر را به يك سر سيم گرفته ، سر ديگر مولتی متر را با 5 سر سيم باقی مانده امتحان می كنيد . هر كدام كه راه داد ، آن يك كلاف سيم پيچ است . )

اشتباه در سرسيم ها :

همانطور كه می دانيم موتور سه فاز از سه سيم پيچ تشكيل شده است.كه هر كدام از سيم پيچها 3/1 شيارهای استاتور را اشغال كرده وباعث تشكيل قطب در موتور می شود و قطب ها حركت دورانی به روتورمی دهد . حال اگر سر سيمی تغيير كند در موتور ايجاد قطب نمی شود و موتور حركت نمی كند و می تواند باعث سوختن موتور شود .
قبل از انجام كار اگر بار روی موتور قرار دارد بار را از روی موتور برداريد. ( تسمه يا ….)

تنظيم دور موتورهای آسنكرون

با دانستن رابطهNr=[60f/p](1-S) دور موتور آسنكرون را ميتوان به طريقه های زير تنظيم نمود :
1. تغيير فركانس ولتاژ شبكه
2. تغيير قطبها
3. داخل كردن مقاومت در مدار روتور
4. تغيير ولتاژ موتور
1-تغيير دور بوسيله تغيير فركانس : با تغيير فركانس سرعت سنكرون تغيير ميكند و دور موتور تغيير ميكند . ميتوان برای تغيير فركانس از يك مولد يا مبدل فركانس استفاده نمود . و يك يا چند موتور القايی كه در شرايط مشابهی كار می كنند بوسيله آنها تغذيه شوند . مانند موتور ماشينهای كارخانه فولاد سازی و موتورهای محرك ماشين نساجی
2-تغيير دور بوسيله تغيير عده جفت قطبها : اين تغيير را در موتورهای آسنكرونی است كه بتوان با سيم پيچهای‌ آن تغيير قطب داد كه اين حالت در موتورهای دو سرعته ( دالاندر ) ديده می شود كه ميتوان با كليد ( دالاندر ) دور موتور را تغيير داد .
3-تغيير دور با داخل كردن مقاومت در مدار روتور : در موتورهای آسنكرون با روتور سيم پيچر شده با تغيير مقاوت مدار روتور ميتوان سرعت گردش روتور را تنظيم كرد ولی چون راندمان موتور بر اثر تغيير دور تغيير ميكند در نتيجه كاربرد اين روش خيلی كم است
4-تغيير دور با تغيير ولتاژ : از اين روش در موتورهای كوچك مانند پنكه و … استفاده ميشود .

موتور آسنكرون با روتور سيم پيچی شده (روتور رينگی)

روتور سيم پيچی شده : به جای ميله ، استاتور را می توان سيم پيچی سه فاز كرد و اينسيم پيچها را به صورت ستاره وصل می كنيم . درروی محور اين موتور سه حلقه كه نسبت به هم و نسبت به محور عايق هستند (رينگ) قرار دارد . سه سر سيم پيچی روتور به اين سه حلقه متصل می شود و به وسيله جاروبكهائی كه روی حلقه ها تكيه دارند به يك مقاومت سه فاز ستاره متصل ميشود.

مزايای موتور آسنكرون با روتور سيم پيچی شده :

§ در موقع شروع به كار گشتاور قوی دارد .
§ بر خلاف موتور آسنكرون با روتور قفسه ای كه جريان شروع به كار آنها كم است جريان شروع به كار كمی‌ دارد .
§ سرعت آن در مقابل بارهای مختلف تقريباً ثابت است .
§ تعداد دور آن تا حدی قابل تنظيم است .( با كم و زياد كردن رئوستا راه انداز )
§ ميتوان تا حدی بار آن را زياد كرد .

معايب موتورهای آسنكرون با روتور سيم پيچی شده :

§ در مقابل تغيير ولتاژ حساسيت دارد .
§ ضريب قدرت آن در موقعيكه بار به حد نرمال نيست كم می باشد .
§ ضريب قدرت آنها نسبت به ضريب قدرت موتور آسنكرون با روتور قفسه ای كمتر است.

موارد استفاده و كاربرد موتورهای آسنكرونبا روتور سيم پيچی شده :

از موتور آسنكرون با روتور سيم پيچی شده :برای قدرت های خيلی زياد مخصوصاً اگر با فشار قوی باشد استفاده می شود و يا اينكه در موقع شروع به كار ، موتور احتياج به گشتاور زياد داشته باشد مانند به راه انداختن ترن يا جرثقيلها و غيره

راه اندازي موتورهاي سنكرون در حالت بارداري

ساختمان : استاتور موتورهاي سنكرون از نظر ساختمان دقيقاً مشابه استاتور موتورهاي القايي است سيم پيچهاي سه فاز آن در داخل شيارهاي هسته آهني استاتور تعبيه شده كه وظيفه آنها ايجاد ميدان دوار در هسته استاتور است.
روتور اين موتور به صورت يكپارچه يا از ورقهاي مغناطيسي ساخته مي شود و بر روي آن يك سيم پيچي جريان مستقيم به نام سيم پيچ تحريك نصب مي شود.
جريان تغذيه سيم پيچي تحريك روتور، از طريق دو حلقه كه بر روي محور روتور نصب شده به وسيله جاروبكها تأمين مي شود و روتور اين موتورها عملا بصورت يك مغناطيس الكتريكي (چرخ قطب) رفتار مي كند كه تعداد قطبهاي روتور به اندازه قطبهاي سيم پيچي استاتور خواهد بود.
طرز كار: هنگام وصل استاتور به شبكه سه فاز ، يك ميدان دوار كه سرعت آن متناسب با فركانس شبكه و تعداد قطبهاي استاتور است در آن بوجود مي آيد و سطح روتور را جاروب مي كند.قطبهاي روتور از طريق قطبهاي غير همنام استاتور جذب و لحظه اي بعد مجدداً اين قطبها به وسيله قطبهاي همنام استاتور دفع خواهند شد. پس ميانگين گشتاور صفر و روتور حركت نمي كند قطبهاي روتور به دليل سنگيني و اينرسي موجود در آن نمي توانند به سرعت همراه ميدان دوار استاتور بچرخند. پس بايد با يك وسيله كمكي (راه انداز) ابتدا سرعت روتور را به نزديكي سرعت ميدان دوار استاتور رساند تا روتور بتواند همراه ميدان دوار چرخش كند.
سؤال: گشتاور راه اندازي اين موتورها چقدر است؟

روشهاي راه اندازي موتورهاي سنكرون:

 

براي راه اندازي موتورهاي سنكرون سه روش اساسي مي توان به كار برد.
1-كاهش سرعت ميدان مغناطيسي استاتور: تا حدي كه روتور بتواند طي نيم سيكل چرخش ميدان مغناطيسي شتاب بگيرد و با آن قفل شود . اين كار را مي توان با كاهش فركانس منبع تغذيه انجام داد.
2-استفاده از يك گرداننده اوليه: كه سرعت موتور را تا حد سرعت سنكرون بالا ميبرد و با طي مراحل موازي كردن ماشين مثل ژنراتور روي خط آورده شود. پس از اين مراحل خاموش كردن با جدا كردن گرداننده اوليه ماشين سنكرون را تبديل به موتور خواهد كرد.
3- استفاده از سيم پيچ هاي ميرا كننده كه در انتهاي قطبين روتور نصب مي شود.
در موتورهاي سنكرون سرعت حركت روتور در هر حال برابر با سرعت ميدان دوار استاتور خواهد بود و افزايش بار فقط عقب ماندگي روتور نسبت به ميدان را موجب مي شود.
اختلاف فاز اين دو ميدان Bs وBR همان زاويه گشتاور است كه از0 تا90 تغيير مي كند. البته اگر افزايش بار بيش حد باشد. موتور از حالت سنكرونيزم خارج خواهد شد كه اصطلاحا آن را ناپايدار مي ناميم ضمنا هنگام كار با سرعت سنكرون با تغييرات جريان تحريك امتداد جريان آرميچر و ضريب قدرت ماشين از حالت پس فازي به اهمي و پيش فازي قابل كنترل خواهد بود كه از اين خاصيت جهت اصلاح ضريب قدرت شبكه استفاده مي شود كه به موتورهاي سنكرون پر تحرك (كاردر حالت پيش فازي) خازنهاي سنكرون نيز گفته مي شود . (موتورهاي سنكرون در حالت كار پيش فازي كم تحريك هستند.) مدار معادل تكفاز موتور سنكرون بصورت زير مي باشد.

تكنولوژي ساخت موتور هاي پله

آیا تا کنون به واژه motion (حرکت) فکر کرده اید. امروزه اهمیت جابه جایی در کلیه زمینه ها احساس می شود. حرکت و سرعت تعریف جدیدی را از جهان امروز ارائه می دهد.
کنترل حرکتی در حوزه الکترونیک به معنی کنترل صحیح حرکت یک شی بر اساس فاکتور هایی مانند سرعت – مسافت- بارگیری و یا ترکیبی از کلیه موارد می باشد. امروزه سیستم های کنترل حرکتی بسیار زیادی مو جود است که می توان از stteper motors- linear stepper motors- Dc brush-… نام برد. در اینجا به توضیحات مختصری از تکنولوژی step motor ها اکتفا می کنیم.
در تئوری از stepper motor به عنوان یک شگفتی در ساده سازی یاد می شود. اساسا هر stepper یک مو تور با یک میدان مغناطیسی می باشد که خود به صورت الکتریکی رو شن شده و باعث چرخش دایرهای آرماتور آهنربا می شود.
قسمت کنترل کننده حرکت از یک کابل میکرو پروسسور جهت تولید پالس های پله ای و ایجاد سیگنال های مسیر حرکت تشکیل شده است. و هر indexer بایستی قادر به انجام دستورات اجرایی باشد.
motion driver و یا همان آمپلی فایر دستورات سیگنال های رسیده از منبع را به قدرت مورد نیاز برای چرخش پره های مو تور می شود. امروزه تعداد زیادی driver با قدرت های مختلف جریان و ولتاژ در ساختار تکنولوژی یافت می شود.
هر stepper motor یک وسیله مغناطیسی است که هر پالس دیجیتال را به یک چرخش مکانیکی مانند چرخش پره تبدیل می کند. از مزیت های آن به هزینه پایین- امنیت بالا – ساده بودن و قابل استفاده بودن در هر محیط می توان اشاره کرد.

انواع stepper motor ها :

variable reluctance
permanent magnet
hybrid
چگونگی طراحی هر driver تعیین کننده نوع خروجی هر stepper motor است که دارای سه نوع full- half- microstep می باشد.
Full step:
استاندارد طراحی دارای 50 چرخندا دندانه دار و تو لید کننده 20 پالس پله ای برای چرخش مکانیکی هر عنصر است.
Half step:
به معنی آن است که مو تور می تواند دارای 400 حرکت پله ای در هر دوره باشد. در این سیستم یک چرخنده خود دارای انرژی ست که باعث چرخش تناوبی دو چرخنده دیگر می شود. half stepping یک راه حل عملی تر در صنعت است.
microstep:
یک تکنولوژی نسبتا جدید است که جریان چرخش هر چرخنده را کنترل می کند. این کنترل در سطحی انجام می شود که تقسیم کننده ای فرئی دور تری در بین قطبها قرار گیرد.

موتور استارترها

همانطوری که می دانید ، راه اندازی موتورهای القایی در صنعت از اهمیت ویژه ای برخوردار است. به خصوص این که امروزه استفاده از راه اندازهای الکترونیکی مانند راه اندازهای نرم – کنترلر های سرعت بسیار مرسوم شده است و لازم است علاقه مندان و کارشناسان این رشته روشهای کنترل و راه اندازی موتورها را به شیوه های کلاسیک به دیده فراموشی بسپارند و به فراگیری روشهای بروز بپردازند.
یکی از روشهای راه اندازی موتورهای القایی راه اندازهای نرم می باشد که از طریق آنها موتور ها از طریق کنترل ولتاژ-فرکانس در یک زمان مشخص بتدریج از سرعت صفر به سرعت نامی می رسند که این روش امروزه کاملا جا افتاده است.
راه اندازهای نرم تنها در هنگام راه اندازی بکار می روند و معمولا پس از راه اندازی توسط یک کنتاکتور بای پس از مدار خارج می گردند. این راه اندازها می توانند به سیستم از کار اندازی نرم نیز مجهز باشند که کاربرد های ویژه ای دارد. ضمن این که عموما این نوع راه اندازها به ترمز الکترونیکی از طریق تزریق جریان مستقیم نیز مجهز می باشند.
سازندگان این نوع راه اندازها معمولا حفاظت های مورد نیاز برای موتور را نیز در راه اندازها تعبیه می کنند که از این طریق حجم راه انداز محدود می گردد. ضمن این که با استفاده از این گونه راه اندازها نیاز به در نظر گرفتن کنتاکتور اصلی نیست . حفاظت هایی که معمولا در راه اندازهای نرم پیش بینی می گردد بشرح زیر است :
– حفاظت در مقابل اضافه بار
– حفاظت در مقابل توالی معکوس فازها و دو فاز شدن
– حفاظت در مقابل افزایش حرارت سیم پیچ های موتور که از طریق سنسورهای حرارتی انجام می گردد.
– حفاظت در مقابل کاهش ولتاژ
و موارد ديگر که بسته به سازنده راه انداز می تواند تغییر کند.
نکته مهم اینجاست که هنگام بسته شدن کنتاکتور بای پس حفاظت های تعبیه شده در راه انداز همچنان فعال می باشد چون مسیر بای پس تنها تایرستورها را بای پس می کند.
جهت بستن کنتاکتور بای پس بعد از راه اندازی موتور عموما از یک کنتاکت راه انداز استفاده می گردد که بعد از رمپ راه اندازی به صورت خودکار فعال می گردد. لازم به ذکر است که برخی از راه اندازهای نرم دارای سیستم بای پس داخلی هستند که دیگر نیاز به در نظر گرفتن کنتاکتور بای پس نیست.
با توجه به این که تایرستورهای بکار رفته در راه اندازهای نرم حرارت تولید می کنند اینطور استنباط می گردد که در تابلو برق های دارای راه اندازهای نرم لازم است از فن استفاده گردد. ولی با توجه به کار راه انداز تنها در مرحله استارت ، حرارت تولید شده تنها به مرحله راه اندازی محدود می گردد و بنابر این در راه اندازهای دارای سیستم بای پس تنها تعبیه شکاف های عبور هوا متناسب با درجه حفاظتی تابلو توصیه می گردد. ضمن این که این گونه راه اندازها عموما مجهز به هیت سینک و فن هستند.
اکثر راه اندازهای نرم مجهز به پورت های اطلاعاتی مانند مودباس- پروفی باس و …. جهت تبادل اطلاعات می باشند که از این طریق می توان از کلیه اطلاعات داخل راه انداز مطلع گردید به این طریق کنترل این راه انداز ها توسط سیستم هایی مانند DCS بسیار ساده می باشد.

موتور های خطی

يك موتور خطي در واقع يك موتور الكتريكي است كه استاتورش غير استوانه شده است تا به جاي اينكه يك گشتاور چرخشي توليد كند، يك نيروي خطي در راستاي طول استاتور ايجاد كند.
طرح‌هاي بسياري براي موتورهاي خطي ارائه شده است كه مي‌توان آنها را به دو دسته تقسيم كرد: موتورهاي خطي شتاب بالا و شتاب پايين. موتورهاي شتاب پايين براي قطارهاي مگليو و ديگر كاربردهاي حمل و نقلي روي زمين مناسب هستند. موتورهاي شتاب بالا معمولاً خيلي كوتاه هستند و براي شتاب دادن به جسمي تا سرعت بسيار زياد و سپس رها كردن آن به كار مي‌روند. اين موتورها معمولاً براي مطالعات برخورد سرعت بالا به عنوان تسليحات نظامي يا به عنوان راه‌اندازنده جرمي براي پيشرانه فضاپيما به كار مي‌رود. موتور خطي‌اي كه براي شتاب دادن به يون ها يا ذره‌هاي زير اتمي به كار مي‌رود، يك شتاب دهنده ذره ناميده مي‌شود. با نزديك شدن ذره‌ها به سرعت نور، طراحي موتورها معمولاً متفاوت مي‌شود و اين ذره‌ها نيز عموماً داري بار الكتريكي هستند.

شتاب پايين

ايده موتور خطي اولين بار توسط پرفسور اريك ليتويت از كالج امپريال در لندن مطرح شد. در طرح وي و در اكثر طرح‌هاي شتاب پايين، نيرو توسط يك ميدان مغناطيسي خطي سيار كه بر روي هادي‌ها موجود در ميدان عمل مي‌كند، ايجاد خواهد شد. در هر هادي‌ چه يك حلقه، چه يك سيم‌پيچ يا يك تكه از فلز تخت كه در اين ميدان قرار گيرد جريان‌هاي گردابي القا شده وجود خواهد داشت و بنابراين يك ميدان مغناطيسي مخالف را ايجاد خواهد كرد. دو ميدان مغناطيسي همديگر را دفع خواهند كرد و بنابراين جسم هادي را از استاتور دور خواهند كرد و آن را در طول جهت ميدان مغناطيسي سيار حمل خواهند كرد.
به علت اين ويژگي‌ها، موتور خطي اغلب در پيشرانه قطار مگليو به كار مي‌رود هر چند كه مي‌توان صرف نظر از پرواز مغناطيسي از آنها استفاده كرد، مانند استفاده در فن‌آوري انتقال پيشرفته و سريع نور كه در سيستم ترن آسماني ونكوور ، Scarborough RT تورنتو، ترن هوايي فرودگاه JGK نيويورك و Putra RTL كووالالامپور به كار مي‌رود. از اين فن‌آوري با تغييراتي در برخي از قطار‌هاي بازي نيز استفاده مي‌شود.
موتورهاي خطي عمودي نيز براي مكانيسم‌هاي بالابر در معدن هاي عميق پيشنهاد شده است.

شتاب بالا

موتورهاي خطي شتاب بالا براي كاربرهاي متعددي پيشنهاد شده‌اند. به علت اينكه مهمات ضد زرهي كنوني بايستي گلوله‌هاي كوچكي با انرژي جنبشي بسيار بالا باشند يعني دقيقاً آنچه كه اين موتورها فراهم مي‌كنند، از آنها به عنوان تسليحات استفاده شده‌ است. اين موتورها همچنين براي استفاده در پيشرانه فضا پيماها به كار گرفته مي‌شود. در چنين شرايطي به اين موتورها راه‌اندازهاي جرمي گفته مي‌شود. ساده‌ترين روش استفاده از راه‌انداز جرمي براي پيشرانه فضا پيما، ساخت يك راه‌انداز جرمي بزرگ است كه بتواند محموله را تا سرعت گريز شتاب دهد.
طراحي موتورهاي شتاب بالا به دلايل متعددي مشكل است. آنها مقادير بزرگ انرژي را در مدت زمان كوتاه نياز دارند. كه براي هر پرتاب در فضا نياز به 300GJ در مدت زمان كمتر از يك ثانيه دارد. ژنراتور ها  ي الكتريكي معمولي براي چنين نوع از باري طراحي نشده‌اند اما روش‌هاي ذخيره انرژي الكتريكي كوتاه مدت را مي‌توان مورد استفاده قرار داد. خازن ‌ها پر حجم و گران هستند اما مي‌توانند به سرعت مقادير بزرگ انرژي را فراهم كنند. ژنراتور ها  ي هم قطب را مي‌توان براي تبديل سريع انرژي جنبشي يك چرخ طيار به انرژي الكتريكي به كار برد. موتورهاي خطي شتاب بالا نيازمند ميدان‌هاي مغناطيسي بسيار قوي‌اي نيز هستند، در واقع ميدان‌هاي مغناطيسي اغلب آنقدر قوي اند كه اجازه استفاده از ابر رساناها را نمي‌دهند. اما با طراحي دقيق مي‌توان اين مشكل را حل كرد.
دو طرح متفاوت پايه‌اي از موتور‌هاي خطي شتاب بالا ابداع شده است: تفنگ‌هاي ريلي و تفنگ هاي كويلي.

موتورهاي فرمان يار DC بدون جاروبك

یک سرو موتور، یا یک موتورDC یا AC یا یک موتور DC بدون جاروبک می‌باشد که ترکیب شده با یک دستگاه تعیین محل موقعیت (کدبردار دیجیتالی). سروو موتورها در ربات‌ها کاربرد خیلی زیادی دارند. این موتورها کوچک ولی نسبت به اندازه‌شان بسیار پرقدرت می‌باشند. موتور DC بدون جاروبک یک موتورDC معمولی نیست، اما یک ماشین سنکرون آهنربای دائم است. این نام بردن واقعی است زیرا مشخصات عملیاتی آن همانند همان موتورهای DC شنت با جریان میدان ثابت است.

موتورهاي پله‌اي

نوع خاصی از موتور سنکرون که برای چرخیدن محور به اندازه یک زاویه خاص برای همه پالس‌های الکتریکی که از واحد کنترل کننده خودش دریافت می‌کند، در نظر گرفته شده است. نوعی از پله‌ها 5/7 یا 15 درجه در هر پالس محور را می‌چرخانند. این است یک موتور که می‌تواند با دو دستورالعمل بچرخد، حرکت کند در زاویه‌‌هایی با فواصل کوچک و دقیق،گشتاور موجود در سرعت صفر را تحمل می‌کند و با مدار دیجیتالی کنترل می‌شود. حرکت می‌کند در زاویه‌های دقیق با فواصل کوچک معلوم به عنوان گام، در پاسخ به استفاده از پالس‌های دیجیتالی به مدار راه‌انداز الکتریکی. به طور کلی، این قبیل موتورها با گام‌هایی در هر دور ساخته می‌شوند. گام‌های موتورها دو قطبی هستند که نیاز به دو منبع قدرت دارند با تک قطبی هستند که تنها نیاز به یک منبع قدرت دارند.

موتورهاي يونيورسال

موتورهای یونیورسال موتورهای چرخشی هستند شبیه به موتورهای DC اما طراحی شده‌اند برای ولتاژ DC با AC تکفاز. سیم‌پیچی‌های استاتور و رتور این موتورها به صورت سری بین کموتاتور رتور متصل شده‌اند. بنابراین موتورهای یونیورسال همچنین معروف هستند به موتورهای AC سری یا یک موتور با کموتاتور AC. موتورهای یونیورسال می‌توانند کنترل شوند با راه‌انداز زاویه فاز و یا راه‌اندازهای برشگر.
موتورهای یونیورسال یک مشخصه گشتاور- سرعت با افت زیاد از یک موتور DC را دارد.

نمونه کاربرد در جاروبرقی، دریل و وسایل آشپزخانه
موتور القايي تك فاز

چندین نوع موتور القایی تک فازکه امروزه مورد استفاده قرار می‌گیرد، وجود دارد. به طور اساسی آنها یکسان هستند مگر برای وسایل راه‌اندازی. آنها طبقه‌بندی می‌شوند به : موتور‌های القایی با انشقاق فاز، موتور با استارت خازنی.

معيارهاي انتخاب موتور

1-دردست بودن منبع تغذیه
2- شرط یا عوامل راه اندازی
3-مشخصه‌های راه اندازی (گشتاور – سرعت) مناسب
4-سرعت عملکرد کار مطلوب
5- قابلیت کارکردن به جلو و عقب
6- مشخصه‌هی شتاب (وابسته به بار)
7- بازده مناسب در بار اسمی
8-توانایی تحمل اضافه بار
9-اطمینان الکتریکی و حرارتی
10-قابلیت نگهداری و عمر مفید
11-ظاهر مکانیکی مناسب (اندازه، وزن،‌ میزان صدا، محیط اطراف)
12- پیچیدگی کنترل و هزینه

چند نوع موتور القایی
موتور القايي AC فاز شكسته

1. موتور القايي با استارت خازني
2. موتورهاي AC القايي با خازن دائمي اسپليت
3. موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

موتور القايي AC فاز شكسته

موتور فاز شكسته همچنين به عنوان Induction start/Induction run (استارت القايي/كاركرد القايي)هم شناخته مي شود كه دو پيچه دارد.پيچه استارت از سيم نازكتر و تعداد دور كمتر نسبت به پيچه اصلي براي بوجود آوردن مقاومت بيشتر ساخته شده است.همچنين ميدان پيچه استارت در زاويه اي غير از آنچه كه پيچه اصلي دارد قرار مي گيرد كه سبب آغاز چرخش موتور مي شود.پيچه اصلي كه از سيم ضخيم تري ساخته شده است موتور را هميشه درحالت چرخش باقي نگه مي دارد.
تورك آغازين كم است مثلا 100 تا 175 درصد تورك ارزيابي شده.موتور براي استارت جرياني زياد طلب مي كند.تقريبا 700 تا 1000 درصد جريان ارزيابي شده.تورك بيشينه توليد شده نيز در محدوده 250 تا 350 درصد از تورك براوردشده مي باشد.
كاربريهاي خوب براي موتورهاي فاز شكسته شامل سمباده (آسياب) هاي كوچك , دمنده ها و فنهاي كوچك و ديگر دستگاههايي با نياز به تورك آغازين كم با و نياز به قدرت 1/20 تا 1/3 اسب بخار مي باشد.از استفاده از اين موتورها در كاربريهايي كه به دوره هاي خاموش و روشن و گشتاور زياد نيازدارند خود داري نماييد.

موتور القايي با استارت خازني

اين نوع , موتور اصلاح شده فاز شكسته با خازني سري با آن براي بهبود استارت است.همانند موتور معمولي فاز شكسته اين نوع موتور يك سوئيچ گريز از مركز داشته كه هنگامي كه موتور به 75 درصد سرعت ارزيابي شده مي رسد , پيچه استارت را از مدار خارج مي نمايد.از آنجا كه خازن با مدار استارت موازي است , گشتاور استارت بيشتري توليد مي كند , معمولا در حدود 200 تا 400 درصد گشتاور ارزيابي شده.و جريان استارت معمولا بين 450 تا 575 درصد جريان ارزيابي شده است.كه بسيار كمتر از موتور فاز شكسته و بعلت سيم ضخيمتر در مدار استارت است.
نوع اصلاح شده اي از موتو با استارت خازني ، موتور با استارت مقاومتي است.در اين نوع موتور خازن استارت با يك مقاومت جايگزين شده است.موتور استارت مقاومتي در كاربريهايي مورد استفاده قرار مي گيرد كه ميزان گشتاور استارتينگي كمتر از مقداري كه موتور استارت خازني توليد مي كند لازم است.صرف نظر از هزينه اين موتور امتيازات عمده اي نسبت به موتور استارت خازني ندارد.
اين موتورها در انواع مختلف كاربريهاي پولي و تسمه اي مانند تسمه نقاله هاي كوچك , پمپها و دمنده هاي بزرگ به خوبي بسياري از خود گردانها و كاربريهاي چرخ دنده اي استفاده مي شوند.

موتورهاي AC القايي با خازن دائمي اسپليت

اين موتور (PSC) نوعي خازن دائما متصل به صورت سري به پيچه استارت دارد.اين كار سبب آن ميشود كه پيچه استارت تازماني كه موتور به سرعت چرخش خود برسد بصورت پيچه اي كمكي عمل كند.از آنجا كه خازن عملكرد اصلي , بايد براي استفاده مداوم طراحي شده باشد , نميتواند توان استارتي معادل يك موتور استارت خازني ايجاد نمايد.گشتاور استارت يك موتور (PSC) معمولا كم و در حدود 30 تا 150 درصد گشتاور ارزيابي شده است.موتورهاي (PSC) جريان استارتي پايين , معمولا در كمتر از 200 درصد جريان برآورد شده دارند كه آنها را براي كاربريهايي با سرعتهاي داراي چرخه هاي خاموش روشن بالا بسيار مناسب مي سازد.
موتورهاي PSC امتيازات فراواني دارند.طراحي موتور براحتي براي استفاده با كنترل كننده هاي سرعت ميتواند اصلاح شود.همچنين مي توانند براي بازدهي بهينه و ضريب توان بالا در فشار برآورد شده طراحي شوند.آنها به عنوان قابل اطمينان ترين موتور تك فاز مطرح ميشوند.مخصوصا به اين خاطر كه به سوئيچ گريز از مركز نيازي ندارند.
موتورهاي PSC بسته به طراحيشان كاربري بسيار متنوعي دارند كه شامل فنها , دمنده ها با نياز به گشتاور استارت كم و چرخه هاي كاري غير دائمي مانند تنظيم دستگاهها (طرز كارها) , عملگر درگاهها و بازكننده هاي درب گاراژها ميشود.

موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

اين موتور , همانند موتور با استارت خازن , خازني از نوع استارتي در حالت سري با پيچه كمكي براي گشتاور زياد استارت دارد.همچنين مانند يك موتور PSC خازني از نوع كاركرد كه دركنار خازن استارت در حالت سري با پيچه كمكي است كه بعد از شروع به كار موتور از مدار خارج مي شود.اين حالت سبب بوجود آمدن گشتاوري در حد اضافي مي شود.
اين نوع موتور مي تواند … و بازده بيشتر طراحي شود.اين موتور بخاطر خازنهاي كاركرد و استارت و سوئيچ گريز از مركز آن پرهزينه است.
اين موتور مي تواند در بسياري از كاربريهايي كه از هرموتور تك فاز ديگري انتظار ميرود استفاده شود.اين كاربريها شامل ماشينهاي مرتبط با چوب , كمپرسورهاي هوا , پمپ های   آب فشار قوي , پمپ های   تخليه و ديگر كاربردهاي نيازمند گشتاورهاي بالا در حد 1 تا 10 اسب بخار مي شوند.

سیم پیچی موتورهای AC تک فاز:

معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.

هنگام راه اندازی ، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.

سیم پیچی موتورهای AC سه فاز:

برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده می‌کنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز ، به گردش در می‌آید. موتورهای سنکرون را می‌توانیم به عنوان مولد جریان هم بکار برد.
سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش ، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور ، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.

موتورهای پله‌ای

نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی ، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش می‌شوند، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتا کنترل شده ، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با کامپیوتر یکی از فرمهای سیستمهای تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند.

موتورهای خطی

یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش ، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع السیر ماگلیو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند.

موتور جریان متناوب یک ماشين الکتریکی است که با جریان متناوب تغذیه شده و توان الکتريکی را تبديل به توان مکانيکی چرخشی يا خطی می نمايد. موتور جريان متناوب AC از دو قسمت اصلی تشکیل شده:

*استاتور: هسته خارجی و معمولاً ثابت که با استفاده از جریان جریان متناوب میدان دوار ایجاد می‌کند.

*روتور: هسته داخلی و متحرک که به محور خروجی متصل شده و با توجه به میدان دوار تولید شده توسط استاتور، گشتاور تولید می‌کند.

از نظر نوع روتور مورد استفاده قرار گرفته در موتورها، موتورهای جریان متناوب به دو صورت طبقه‌بندی می‌شوند:

*موتور سنکرون یا هم‌زمان که در آن روتور دقیقاً با سرعت میدان دوار می‌چرخد. در این نوع موتورها میدان الکتریکی روتور به وسیله یک منبع خارجی تامین می‌شود.

*موتور اسنکرون یا القایی که در آن میدان الکتریکی روتور از القای میدان استاتور پدید می‌آید.

تاریخچه

در ۱۸۸۲ نیکولا تسلا اصول میدان مغناطیسی دوار را پایه گذاری کرد و راه را برای استفاده از میدان دوار به عنوان یک نیروی مکانیکی باز کرد. در سال ۱۸۸۳ او از این اصول برای طراحی یک موتورالقایی دو فاز استفاده کرد. در ۱۸۸۵ «گالیلئو فراریس» (Galileo Ferraris) مستقلاً تحقیقاتی را در این باره آغاز کرد و در ۱۸۸۸ نتایج تحقیقات خود را در قالب مقاله‌ای به آکادمی‌سلطنتی علوم در تورین ایتالیا ارایه داد.

حرکتی که نیکولا تسلا در ۱۸۸۸ آغاز کرد چیزی بود که امروزه برخی از آن به عنوان «انقلاب صنعتی دوم» یاد می‌کنند، چراکه این حرکت به تولید آسانتر انرژی الکتریکی و همچنین امکان انتقال انرژی الکتریکی در طول مسافت‌های طولانی انجامید. قبل از اختراع موتورهای جریان متناوب به وسیله تسلا موتورها به وسیله حرکت دائم یک هادی در میان میدان مغناطیسی ثابت به حرکت در می‌آمدند. تسلا به این نکته اشاره کرد که می‌توان کلکتورهای موتور را حذف کرد به طوریکه موتور به وسیله میدانی دوار به حرکت درآید. تسلا بعدها موفق به کسب حق امتیاز شماره ۰٫۴۱۶٫۱۹۴ ایلات متحده برای اختراع موتور خود شد. این موتور که در بسیاری از عکس‌های تسلا نیز هست نوع خاصی از موتور القایی بود.

در سال ۱۸۹۰ میخایل اسیبوویچ یک موتور سه فاز روتور قفسی اختراع کرد. این نوع موتور امروزه به طور وسیعی برای کاربردهای گوناگون استفاده می‌شود

موتور جریان متناوب سه فاز القایی

در بیشتر محل‌های که سیستم تغذیه سه فاز (یا چند فاز) در دسترس است از این گونه موتورها استفاده می‌شود به ویژه در قدرت‌های بالاتر استفاده از این موتورها بسیار رایج است. اختلاف زاویه بین هر یک از سه فاز تغذیه کننده باعث به وجود آمدن یک میدان دوار متعادل می‌شود که دارای سرعتی ثابت است.

در یک موتور القایی میدان مغناطیسی دوار موجب القای یک جریان در هادی‌های روتور می‌شود. این جریان به طور متقابل میدان مغناطیسی را به وجود می‌آورد که موجب چرخش روتور در جهت میدان مغناطیسی دوار خواهد شد. اما نکته‌ای که باید به آن توجه داشت این است که روتور همیشه باید با سرعتی کمتری از سرعت استاتور بچرخد و به عبارت دیگر در صورتی که سرعت روتور و میدان دوار یکسان باشد جریانی در روتور القا نخواهد شد.

موتورهای القایی در صنایع به طور گسترده‌ای مورد استفاده قرار می‌گیرند اما قدرت‌های حدود ۵۰۰ کیلووات خیلی بیشتر رایج هستند. موتورهای القایی معمولاً با اندازه‌های استانداردی ساخته می‌شوند (البته این استانداردها در اروپا و آمریکا متفاوت است) این استانداردگذاری در ساخت موتورها تقریباً همه آنها را قابل تعویض می‌کند. توان برخی از موتورها القایی بسیار بزرگ تا ده‌ها هزار کیلو وات می‌رسد و از جمله استفاده‌های این موتورها می‌توان به کمپرسور های خطوط لوله و تونل‌های باد اشاره کرد. برای این موتورها دو نوع مختلف از روتور وجود دارد:

*روتور قفسی (قفس سنجابی)

*روتور سیم‌پیچی شده

انواع موتورهای سه فاز ولتاژ متناوب
موتور القایی روتور قفسی | موتور القایی سیم پیچی شده | موتور سنکرون قطب برجسته | موتور سنکرون قطب صاف‌ |

روتور قفسی

بیشتر موتورهای جریان متناوب از این نوع روتورها استفاده می‌کنند به طوری که می‌توان گفت همه موتورهای خانگی و موتورهای سبک صنعتی از این نوع روتورها استفاده می‌کنند. روتور قفسی یا قفس سنجابی نام خود را به خاطر شکلش گرفته؛ دو رینگ در دو انتهای روتور که به وسیله میله‌های به هم وصل شده‌اند شکلی تقریبً شبیه یک قفس تشکیل می‌دهند. این میله‌ها عموماً از جنس آلمینیوم یا مس هستند و در بین ورقه‌های لایه لایه شده فولادی ریخته شده‌است. بیشتر جریان القا شده در روتور از میان این میله‌ها عبور می‌کند چراکه ورق‌های لایه لایه فولادی به علت لاک زنی شدن دارای مقاومت الکتریکی زیادی هستند. ولتاژ ایجاد شده در بین حلقه‌ها بسیار پایین است اما جریان جاری بسیار زیاد است و این به دلیل مقاومت پایین این میله‌هاست. در موتورهایی که راندمان بالاتری دارند از مس برای تولید روتور استفاده می‌شوند چراکه مقاومت الکتریکی این فلز کمتر است.

در هنگام کار، موتور القایی شبیه یک ترانسفورماتور عمل می‌کند که استاتور اولیه و روتور ثانویه آن محسوب می‌شود. زمانیکه روتور با سرعت میدان دوار نمی‌چرخد جریان القا شده در روتور زیاد است، این جریان زیاد میدان مغناطیسی ایجاد می‌کند که با افزایش سرعت روتور سرعت آن را هرچه بیشتر به سرعت استاتور نزدیک می‌کند. یک موتور القایی روتور قفسی در هنگام بی باری (سرعت برابر با میدان دوار) تنها مقدار کمی‌انرژی الکتریکی برای جبران تلفات مکانیکی (اصطکاک) و تلفات مسی (تلفات ایجاد شده به دلیل مقاومت هادی‌های الکتریکی) مصرف می‌کند. اما زمانی که بار موتور افزایش می‌یابد میزان جریان جاری در روتور افزایش می‌یابد (برای جبران فشار وارده به محور موتور) و به این ترتیب موتور مانند یک ترانسفورماتور عمل می‌کند چراکه با افزایش جریان در ثانویه جریان اولیه نیز افزایش می‌یابد. این دلیل کاهش یافتن نور لامپ‌ها در هنگام روشن شدن موتورهای القایی است البته زمانی که این موتورها به هواکش‌ها متصل شده‌اند این اتفاق نمی‌افتد.

موتورهای القایی که از حرکت وامانده‌اند (به دلیل بار زیاد یا گیر کردن محور) جریانی بسیار زیاد مصرف خواهند کرد چراکه تنها عامل محدود کننده جریان در چنین حالتی مقاومت ناچیز هادی‌های استاتور و روتور خواهد بود و در صورتی که این جریان به وسیله عاملی خارجی مهار نشود موتور و تجهیزات تغذیه کننده آن آسیب خواهند دید.

روتور سیم‌پیچی

زمانی که مقاومت سر راه روتور قابل تغییر باشد، روتور را سیم‌پیچی شده می‌نامند. یکی از کاربردهای این نوع روتورها در موقعیت‌هایی است که به سرعت متغیر نیاز است. در این روتورها سم‌پیچ روتور طوری پیچیده شده که تعداد قطب‌ها در روتور و استاتور برابر هستند و خروجی هر فاز از روتور به طور جداگانه و به وسیله حلقه‌های لغزنده از موتور خارج شده‌است. این حلقه‌های لغزنده ارتباط الکتریکی خود با محور موتور را معمولاً به وسیله کربن ایجاد می‌کنند و پس از خارج شدن از موتور به یک مقاومت متغیر خارجی وصل می‌شوند.

در مقایسه با موتورها روتور قفسی، موتورهای روتور سیم‌پیچی گران‌تر هستند و به علت استهلاک حلقه‌های لغزان دارای هزینه تعمیر و نگه‌داری بالاتری نیز هستند، قبل از تولید تجهیزات کنترل سرعت الکترونیکی این موتورها بهترین راه برای کنترل سرعت بودند همچنین این موتورها می‌توانند در لحظه شروع به کار گشتاور بالاتری داشته باشند. استفاده از کنترل کننده‌های ترانزیستوری فرکانس راهی مناسب برای کنترل دور موتورهای جریان متناوب است و این از تمایل برای استفاده از موتورهای روتور سیم‌پیچی کاسته‌است.

راه‌های مختلفی برای راه‌اندازی موتورهای جریان متناوب استفاده می‌شود که اغلب این راه‌ها بر کاهش جریان هجومی‌در هنگام راه‌اندازی و همچنین افزایش گشتاور راه‌اندازی تکیه می‌کنند. این گونه موتورها تنها با وصل ترمینال‌های ورودی به برق شهری با ولتاژ استاندار شروع به کار می‌کنند و (بر خلاف برخی موتورهای جریان مستقیم) نیاز به روش راه‌اندازی ویژه‌ای ندارند. یکی دیگر از روش‌های کاهش جریان راه‌اندازی موتور، کاهش ولتاژ سیم‌پیچ‌ها در لحظه راه‌اندازی است که این کار به وسیله سری کردن سیم‌پیچ‌های بیشتر یا استفاده از اتوترانسفورماتور،تریستور و یا دیگر تجهیزات کاهش ولتاژ صورت می‌گیرد. روشی دیگر برای کاهش ولتاژ سیم‌پیچ‌ها در لحظه راه‌اندازی تغییر طرز قرار گرفتن سیم پیچ‌ها و استفاده از کلیدهای ستاره-مثلث است. در این حالت ابتدا موتور را در حالت ستاره راه اندازی کرده و پس از رسیدن به دور نامی، ترتیب قرار گرفت سیم‌پیچ‌ها را به وسیله کلید تغییر داده و به حالت مثلث می‌برند. این روش در اروپا رایج‌تر از آمریکای شمالی است.

سرعت موتور آسنکرون

سرعت در یک موتور جریان متناوب به دو عامل فرکانس و تعداد قطب‌های موتور بستگی دارد و از فرمول زیر به دست می‌آید:

که:

NS سرعت میدان دوار یا سرعت سنکرون (r. p. m)

f فرکانس منبع جریان متناوب (هرتز)

P تعداد قطب‌های سیم‌پیچی به ازای هر فاز است.

میزان سرعت واقعی روتور همیشه از سرعت میدان دوار کمتر است. این اختلاف سرعت را لغزش می‌نامند و با S (مخفف slip به معنی لغزش) نمایش می‌دهند. در حالت بی‌باری سرعت روتور به سرعت سنکرون خیلی نزدیک خواهد بود و در بار نامی‌موتور لغزشی بین ۲ تا ۳ درصد خواهد داشت که در برخی موتورها این لغزش تا ۷٪ نیز می‌رسد. میزان لغزش در یک موتور جریان متناوب از رابطه زیر به دست می‌آید:

که:

Nr سرعت روتور (r. p. m)

S میزان لغزش است که می‌تواند عددی بین ۱ و ۰ باشد..

موتور جریان متناوب سه فاز سنکرون

اگر خروجی قطب‌های روتور به وسیله کلکتورها از موتور خارج شده و به یک منبع خارجی وصل شود به طوری که روتور نیز به نوبه خود میدانی جداگانه و مداوم را ایجاد کند به موتور موتور سنکرون یا هم‌زمان گفته می‌شود. سرعت چرخش روتور در موتورهای سنکرون همواره برابر سرعت میدان دوار است و به همین دلیل این موتورها را هم‌زمان می‌نامند.

از این موتورها می‌توان به عنوان یک ژنراتور جریان متناوب نیز استفاده کرد.

امروزه موتورهای سنکرون را اغلب به وسیله کنترل کننده‌های ترانزیستوری فرکانس راه‌اندازی می‌کنند. این موتورها همچنین می‌توانند به صورت یک موتور القایی نیز راه‌اندازی شوند به این صورت که در روتور این موتورها از میله‌های هادیی شبیه روتورهای قفسی استفاده می‌شود و پس از راه اندازی، این قسمت روتور خود به خود از مدار خارج می‌شود به این صورت که پس از رسیدن موتور به دور نامی‌مقدار ناچیزی جریان در قفس رتور القا می‌شود و بدین ترتیب تقریباً از مدار خارج می‌شود.

یکی از کاربردهای موتورهای سنکرون اصلاح ضریب توان است. در مراکز صنعتی تقریباً تمامی‌بارها (به جز موتورهای سنکرون پر تحریک) از انرژی الکتریکی به صورت پس فاز استفاده می‌کنند. بارهای پس فاز موجب به وجود آمدن اختلاف فاز در مدار شده و ضریب توان مدار را کاهش می‌دهند که این می‌تواند موجب به وجود آمدن تلفات اضافی در طول خطوط شود. به دلیل خصوصیت خاص موتورهای سنکرون می‌توان از آنها برای اصلاح ضریب توان نیز استفاده کرد، چراکه در صورتی که موتور سنکرون در حالت پر تحریک کار کند تقریباً مانند یک بار خازنی عمل کرده و از انرژی الکتریکی به صورت پیش فاز استفاده می‌کند و به این ترتیب می‌توان از یک موتور سنکرون به جای خازن‌های اصلاح ضریب توان استفاده کرد. این خصوصیت موتورهای سنکرون باعث شده که با وجود مشکلات مربوط به راه‌اندازی آنها، استفاده از آنها هنوز رایج باشد.

برخی از بزرگ‌ترین موتورهای جریان متناوب در نیروگاه‌های آب تلمبه‌ای مورد استفاده قرار می‌گیرند چراکه این موتورها به راحتی می‌توانند نقش ژنراتور را ایفا کنند و به این ترتیب در ساعات کم مصرف انرژی الکتریکی به صورت موتور عمل کرده و آب را به مخزن پر ارتفاعی پمپ کنند و سپس در ساعات پر مصرف با پایین آمدن آب به صورت ژنراتور عمل کرده و از شبکه پشتیبانی کنند. در نیروگاه آب تلمبه‌ای Bath County در ویرجینیای آمریکا از شش ژنراتور سنکرون ۳۵۰ مگاواتی استفاده شده‌است که در زمان پمپ، هرکدام می‌توانند توانی برابر ۵۶۳۴۰۰ اسب بخار (۴۲۰۱۲۷ وات) تولید کنند.

راه اندازی

موتورهای آسنکرون با توجه به قدرت و ولتاژ آن به طرق مختلف راه اندازی می‌شوند و با توجه به ‏اینکه موتور در لحظه شروع به کار جریان زیادی از منبع الکتريکی می‌کشد و این جریان زیاد علاوه بر اینکه به خود ‏موتور صدمه می‌زند به مصرف کننده‌های دیگری که از این خط مشترک تغذیه می‌شوند لطمه زده و کار آنها را ‏مختل می‌سازد‎. ‎ موتور آسنکرون معمولاً به روشهای زیر راه اندازی می‌شود در نتیجه جریان راه اندازی‌ کم می‌شود‏‎:

به طور مستقیم‎

برای‌ موتورهایی که بزرگ نیستند و‌ آمپر زیادی از شبکه نمی‌‏کشند بوسیله یک کلید سه قطبی به شبکه متصل می‌شوند‎.

توسط کليد يا مدار ستاره–مثلث

ابتدا ولتاژ اولیه را که بر هر فاز متصل می‌شود،‌ را کم مى کنیم سپس ‏وقتی که موتور به دور نرمال خود رسید ولتاژی را که به هر فاز می‌رسد زیاد می‌کنیم. بنابراین در لحظه اول کلید به حالت ستاره بوده یعنی ولتاژ دو سر هر فاز به‎ u/√3 ‎تقلیل می‌یابد ‏در نتیجه موتور با توان 3/1 توان نامی‌خود کار می‌کند‏‎. استعمال کلید روی انواع موتورها با روتور قفسه‌ای یا روتور سیم پیچی امکان پذیر است. ولی در ‏موتورهایی که با بار زیاد کار می‌کنند از کلید برای راه اندازی استفاده نمی‌شود. چون گشتاور ‏مقاوم بار زیاد است‎.

توسط کمپانساتور

این وسیله راه اندازی که اتوترانسفورماتور کاهنده است بین موتور ‏و شبکه قرار می‌گیرد. این طریق راه اندازی به دلیل اینکه جریان شروع به کار و گشتاور شروع به ‏کار هر دو به یک نسبت پایین می‌آیند خیلی خوب است. ولی چون هزینه آن گران است فقط در ‏موتورهایی که قدرت زیاد دارند استفاده می‌شوند‎.

اضافه کردن مقاومت در مدار روتور

برای جلوگیری از ‏عبور جریان زیاد در موقع راه اندازی موتور می‌توان مقاومت هایی به طور سری سر راه سیم پیچی ‏های موتور قرار دارد. و به تدریج که موتور دور می‌گیرد دسته مقاومتهای راه انداز را به طرف چپ ‏حرکت داده در این صورت کم کم مقاومتها از سر راه مدار خارج می‌شود‎. این طریق راه اندازی به دلیل تلفات انرژی در مقاومتها زیاد و نیروی کشش در لحظه شروع به کار کم ‏، استعمال کمی‌دارد‎.

اضافه کردن مقاومت در مدار استاتور

تمام ‏مقاومتهای راه انداز را سر راه سیم پیچی روتور قرار داد. بدین وسیله مقاومت مدار سیم پیچی روتور ‏را به حداکثر مقدار خود میرسانند و سپس استاتور را به شبکه برق وصل می‌کنند. مقاومت رئوستای ‏روتور به تدریج از مدار خارج می‌شود.

سروو موتورهای دو فاز جریان متناوب

یک سروو موتور جریان متناوب دارای یک روتور قفسی است و سیم‌پیچ آن شامل دو قسمت است: ۱) سیم پیچ اصلی ۲) سیم پیچ کمکی که از آن برای به وجود آوردن میدان دوار استفاده می‌شود. در این موتورها مقاومت روتور بالا است و بنابراین منحنی گشتاور-دور این موتورها تقریباً خطی است. به طور کلی این موتورها، موتورهایی پر سرعت و با گشتاور پایین هستند و معمولاً قبل از وصل به بار سرعت آنها به وسیله وصل به چرخ‌دنده‌ها کاهش می‌یابد.

موتور با قطب سایه دار

برخی موتورهای جریان متناوب، دارای قطب سایه‌دار (چاک دار) هستند. از این قطب برای ایجاد گشتاور راه‌اندازی در موتور استفاده می‌شود. نمونه این موتورها در فن‌های الکتریکی کوچک و برخی پمپ‌های کوچک و برخی دیگر از موتورهای توان پایین دیده می‌شود. در این موتورها از یک سیم پیچ کوچک و با سطح مقطع پایین با نام سیم‌پیچ سایه‌ای استفاده می‌شود به این صورت که قسمتی از هر قطب به وسیله این سیم‌پیچ پوشیده شده‌است. طرز کار این موتورها به این صورت است که با القای الکتریکی در سیم‌پیچ‌ها به علت خاصیت سلفی سیم‌پیچ‌های سایه‌ای، این سیم‌پیچ‌ها با تغییرات جریان مخالفت می‌کنند (قانون لنز) و بنابراین یک اختلاف اندک بین جریان در سیم پیچ اصلی و سیم‌پیچ سایه‌ای ایجاد می‌شود که موجب چرخش موتور شده و از قفل شدن موتور در لحظه راه‌اندازی جلوگیری می‌کند. با افزایش سرعت روتور نیاز به وجود قطب‌های کمکی از بین می‌رود چراکه به دلیل وجود اینرسی موتور به چرخش ادامه می‌دهد.

موتور القایی با انشقاق فاز

یکی دیگر از انواع موتورهای تک فاز القایی، موتور با انشقاق فاز است که نسبت به موتور با قطب سایه‌دار کاربردهای مهم‌تری دارد. از جمله کاربردهای این موتورها می‌توان به موتورهای مورد استفاده قرار گرفته در ماشین‌های لباسشویی و خشک‌کن‌ها اشاره کرد. در مقایسه با موتورهای با قطب سایه‌دار این موتورها گشتاور راه‌اندازی خیلی بیشتری دارند و این به دلیل استفاده از سیم‌پیچ راه انداز است. این سیم‌پیچ راه‌انداز معمولاً پس از راه‌اندازی کامل موتور به وسیله یک کلید گریز از مرکز از مدار خارج می‌شود.

در موتورهای انشقاق فاز، سیم‌پیچ راه انداز همیشه با مقاومت بیشتری نسبت به سیم‌پیچ اصلی ساخته می‌شود و به این ترتیب نسبت المان‌های سلفی و مقاومتی در هر سیم پیچ متفاوت است، همچنین تعداد دور سیم‌پیچ کمکی کمتر از سیم‌پیچ اصلی است که این موجب کاهش خاصیت سلفی این سیم‌پیچ می‌شود. بنابراین این سیم‌پیچ نسبت به سیم‌پیچ اصلی دارای مقاومت بیشتر و اندوکتانس کمتر است. کمتر بودن نسبت L به R موجب به وجود آمدن اختلاف فاز در دو سیم‌پیچ می‌شود که معمولاً بیشتر از ۳۰درجه نیست. این اختلاف فاز موجب چرخش موتور در لحظه راه‌اندازی می‌شود. پس از راه‌اندازی به علت وجود اینرسی موتور به چرخش خود ادامه می‌دهد و به این ترتیب نیازی به سیم‌پیچ کمکی نخواهد بود به همین دلیل سیم‌پیچ کمکی به وسیله کلید گریز از مرکز از مدار خارج می‌شود و به این ترتیب از ایجاد تلفات اضافی به وسیله سیم‌پیچ کمکی جلوگیری می‌شود.

موتورهای جریان متناوب با خازن راه‌انداز

در موتورهایی که از خازن برای راه اندازی استفاده می‌کنند از یک خازن که با سیم‌پیچ کمکی سری شده استفاده می‌شود. این خازن در واقع وظیفه ایجاد اختلاف فاز بین سیم‌پیچ‌ها را بر عهده دارد. اختلاف فاز ایجاد شده توسط خازن‌ها در لحظه راه‌اندازی خیلی بیشتر از نوع قبلی است و بنابراین میزان گشتاور راه‌اندازی این موتورها نیز بیشتر است و البته هزینه این موتورها نیز بیشتر است.

موتورهای خازنی با خازن ثابت

نوع دیگری از موتورهای جریان متناوب موتورها با خازن ثابت یا موتورهای PSC هستند. این موتورها دقیقاً مانند موتورهای خازنی که در بالا توضیح داده شد عمل می‌کنند با این تفاوت که فاقد کلید گریز از مرکز بوده و بنابراین خازن در این موتورها همواره در مدار است. موتورهای با خازن ثابت به طور گسترده‌ای در فن‌ها، دمنده‌ها و سیستم‌هایی که تغییر سرعت برای آنها مطلوب است استفاده می‌شوند. در برخی موارد که نیاز به استفاده از یک موتور سه فاز به صورت تک فاز است با اتصال یک خازن به یکی از فازها و سری کردن دوفاز دیگر می‌توان از موتور سه فاز به صورت تک فاز استفاده کرد که البته در این حالت گشتاور موتور کاهش می‌یابد.

موتور پولزیون

موتور پولزیون یا موتور دفع کننده نوعی موتور تک فاز جریان متناوب است. روتور این موتورها سیم‌پیچی شده و تا حدودی شبیه موتورهای یونیورسال هستند. در گذشته تعدادی از این موتورها ساخته می‌شد اما استفاده از موتورهای RS-IR (راه‌انداز دفع کننده-حرکت القایی) به نسبت رایج تر بود. موتورهای RS-IR دارای یک کلید گریز از مرکز هستند که پس از رسیدن به سرعت نامی‌تمام کلکتورها را به هم وصل کرده و روتور را به صورت یک روتور قفسی در می‌آورد بنابر این موتور در هنگام کار مانند یک موتور روتور قفسی عمل می‌کند. از موتورهای RS-IR در مواردی استفاده می‌شده که نیاز به وجود گشتاور راه‌اندازی بالا در دمای پایین و تنظیم ولتاژ اندک بوده. امروزه این نوع موتورها ساخته نمی‌شوند.

موتور سنکرون جریان متناوب تک فاز

موتورهای سنکرون تک فاز کوچک به جای ایجاد میدان مغناطیسی به وسیله یک منبع خارجی از آهنرباهای کوچک برای ایجاد میدان استفاده می‌کنند. بنابراین روتور این موتورها نیازی به جریان القا کننده نخواهد داشت. خصوصیت اصلی این موتورها سرعت ثابت آنهاست به طوریکه اغلب در وسایلی از آنها استفاده می‌شود که نیاز به سرعتی ثابت دارند. این موتورها در ساعت‌ها، دیسک گردان‌ها، ضبط صوت‌ها و برخی دیگر از تجهیزات دقیق مورد استفاده قرار می‌گیرد.

مشخصات الکتروموتور ها

مشخصاتي كه روي پلاك الكتروموتور ها مينويسند براي استفاده بهينه در طراحي و راه اندازي صحيح بكار ميرود و شامل نكاتي ميشود كه گاهي بي توجهي به آن باعث بهره بري كمتر و خسارت به تجهيزات الكتريكی ميگردد .

لذا پلاك خواني الكترو موتورها كمك زيادي به طراح و راه انداز براي طراحی مدار مربوطه و انتخاب صحيح كنتاكتور و بي متال و … مينمايد .

مشخصاتی که روی پلاک ها نوشته می شوند به طور معمول عبارتند از :

No: شماره ساخته شده توسط كارخانه

Type:شامل كليه مشخصات فني الكترو موتور كه در كاتالوگ كارخانه موجود بوده و يا در مكاتبه با كارخانه بايد به آن اشاره شود:

A=حداكثر جريان مجاز الكترو موتور را نشان ميدهد كه ميزان جريان نبايد بيشتر از مقدار فوق و بلكه

هميشه الكترو موتور طوري انتخاب شود كه زير مقدار فوق كار كند.

V = ولتاژ كاري الكترو موتور ميباشد كه نبايد ولتاژ بيشتر و يا كمتر به سيم پيچهاي الكترو موتور اعمال گردد

50 HZالكترو موتور بايد در فركانس 50 هرتز كار كند (برق ايران)

60 HZ الكترو موتور بايد در فركانس 60 هرتز كار كند (فركانس برق برخي كشورها)

نكته: دور الكترو موتور ها با فركانس ارتباط دارد لذا الكتروموتوری كه در فركانس 50 هرتز مثلا 1500 دور ميباشد همين الكترو موتور در فركانس 60 دورش ديگر 1500 نيست .

R.P. M= نشان دهنده دور الكترو موتور در يك دقيقه در روي شقت خروجي ميباشد.

KW=مقدار توان الكترو موتور را نشان ميدهد.

نكته : اگر روي پلاك الكترو موتوری   نوشته شده بود 380/220 V= معني ان اين است كه اين الكترو موتور در شبكه برق 110 ولت كه برخي از كشورها استفاده ميشود بايد بصورت مثلث و در كشورهاي كه ولتاژ 220ولت ( ولتاژ بين يك فاز و نول) دارند مثل ايران بايد بصورت ستاره بسته شود .

IP= ميزان حفاظت الكترو موتور در مقابل گرد و غبار و .. و طبق جدول زير ميباشد.

 

انواع حفاظتها طبق استاندارد دين 40050

P00= باز بدون حفاظت در مقابل تماس با اجسام خارجي و أب

P10= محفوظ در مقابل تماس دست و اجسام بزرگ خارجي

P11= محفوظ در مقابل تماس دست و اجسام بزرگ خارجي – محفوظ در مقابل اب

P20= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط بدون حفاظ در مقابل اب

P21= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط – ضد اب

P22= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط –محفوظ در مقابل ترشح اب بطور عمودي يا

مايل با زاويه بيشتر از 30 درجه نسبت به افق

P30= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن – بدون محافظت در مقابل اب

P31= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن – ضد اب

P32= محفوظ در مقابل تماس با ابزار ها و غيره و اجسام خارجي سبك وزن – محفوظ در مقابل ترشح اب بطور عمودي يا مايل با زاويه بيشتر از 30 درجه نسبت به افق

P40= محفوظ در مقابل كليه موارد فوق

 

مکانیزاسیون نگهداری و تعمیرات الکتروموتور ها با معرفی نرم افزار ” دستیار ”

1- آنالیز جریان

2- آنالیز ارتعاشات

3- ترموگرافی

4- آنالیز مدار موتور

5- آنالیز آلتراسونیک

6- تستهای الکتریکی

7- آنالیز روغن

در روش نت براساس شرایط ( CBM ) بصورت مراحل زیر همانطوریکه ملاحظه می شود نیاز به جمع آوری و سپس تجزیه و تحلیل داده های آماری می باشد .

 

1- آماده سازی

2- طراحی

3- استقرار و اجرا

4- بهبود سیستم

 

باتوجه به حجم اطلاعات ، نیاز به تجزیه و تحلیل آنها و ارائه گزارشات متنوع و بهنگام نیاز به مکانیزه نمودن نگهداری و تعمیرات الکتروموتورها بیش از پیش احساس می شود .

خوشبختانه اخیرا” یک شرکت ایرانی موفق به طراحی نرم افزار خاص الکتروموتورهای صنعتی شده است که علاوه بر تامین نیازهای فوق کاربرد بسیاری در کارگاههای سیم پیچی کارخانجات دارد . این نرم افزار که نام آن ” دستیار ” می باشد با توجه به نیاز کارخانجات در 5 سطح تهیه شده است تا همه صنایع کشور با توجه به تعدد و تنوع الکتروموتورهای خود بتوانند با حداقل هزینه از آن استفاده نمایند .

این نرم افزار با آموزش یکروزه برنامه ریزی نگهداری و تعمیرات الکتروموتورها و نرم افزار مربوطه جهت 10 نفر و خدمات پشتیبانی ارائه می گردد .

 

کلاس عایق بندی در الکتروموتور ها

انجمن بین المللی تولیدکنندگان تجهیزات الکتریکی ( NEMA ) عایق بندی موتورها را باتوجه به درجه حرارت موتور در محیطهای مختلف کاری در چهار کلاس A , B , F , H طبقه بندی نموده است :

موتورها عموما” در کلاس F و بندرت در کلاس A کار می کنند . قبل از شروع بکار موتور ، آنها تحت تاثیر دمای محیط اطراف خود قرار دارند که ما اصطلاحا” آن را دمای محیط ” Temperature Ambient ” می گوئیم .

در NEMA برای تمام کلاسهای عایق بندی دمای ابتدایی 40 درجه سانتیگراد با یک رنج حرارتی بصورت زیر استاندارد شده است :

وقتی موتور استارت می خورد ، دما افزایش می یابد . هر کلاسی یک دمای مجاز مشخصی دارد . ترکیبی از دمای محیط و دمای مجاز معادل ماکزیمم دمای سیم پیچها خواهدبود . بعنوان مثال در کلاس F ، با فاکتور سرویس 1 ، دما به اندازه 105 درجه می تواند افزایش یابد . بنابراین داریم که :

145= 40 + 105

Hot Spot : با یک بازه مجاز حرارتی ( مثلا” 10 درجه ) گرمترین نقطه در مرکز سیم پیچ را با این نام می شناسیم .

در کلاس F این بازه 10 درجه است . بنابراین مرکز سیم پیچ دارای بیشترین دمای مجاز 155 درجه خواهد بود . دمای کاری موتور در کارآیی و طول عمر کاری موتور بسیار مهم است . تا جائیکه 10 افزایش دما از بالاترین حد مجاز باعث کاهش عمرعایق بندی موتور به اندازه 50% می شود .

کارآیی موتور ( Effeciency ) : درحقیقت همان بازده موتور است و نشان دهنده این است که چه مقدار از انرژی داده شده به موتور به انرژی مکانیکی تبدیل می شود . هرچه این عدد به یک نزدیکتر باشد کارآیی موتور بیشتر و البته قیمت موتور بالاتر است . یک موتور 30 اسب بخار با کارآیی 93.6% در مقایسه با موتور مشابهی با کارآیی 83% ، انرژی کمتری مصرف می کند . در نتیجه حرارت کاری پائین تر ، طول عمر بیشتر ، و سطح نویز کمتری خواهد داست .

ارتباط بین تعداد قطب و دور موتورهای الکتریکی

معمولا” بعد از اعداد مربوط به سایز فریم موتور اعداد مربوط به تعداد قطب موتور می آید که در موتورها ( بخصوص زیمنس ) بصورت 4AA نشان داده می شود هد که منظور عدد 4 می باشد . لازم به یادآوری است که سرعت سنکرون موتور همان سرعت میدان مغناطیسی ( استاتور ) است که با Ns نمایش می دهند . بنابراین اگر فرکانس میدان مغناطیسی را با F و تعداد قطبهای موتور را با P دهیم خواهیم داشت :

Ns – 120 F / P

Ns = ( 120 x 50 / 2 ) = 3000 RPM

با افزایش تعداد قطب ، سرعت سنکرون و درنتیجه دور موتور کاهش می یابد . بنابراین طبق مطالب گفته شده ، در فرکانس 60 هرتز و 50 هرتز ( در ایران )جداول زیر را خواهیم داشت :

فرکانس 50 هرتز
سرعت سنکرون تعداد قطب
3000 2
1500 4
1000 6
750 8
600 10
500 12

 

فرکانس 60 هرتز
سرعت سنکرون تعداد قطب
3600 2
1800 4
1200 6
900 8
720 10

 

 

بنابراین درموتور زیمنس 1LA02864SE41 تعداد قطب 4 و در نتیجه سرعت سنکرون موتور 1500 خواهد بود .

فاکتورهای مهم در کارآیی و عملکرد الکتروموتورها

فاکتورهای موثر در کارآیی و عملکرد موتور :

1- ولتاژ : افزیش یا کاهش ولتاژ از یک حد مجاز تاثیرات مخربی بر روی موتورها می گذارد . با توجه به جدول زیر داریم که :

الف – کاهش 10% ولتاژ از مقدار نامی ، موجب 20% کاهش گشتاور شده و آن سبب می شود که موتور استارت بشود و یا اینکه به دور نامی برسد .

ب- افزایش 10% ولتاژ از مقدار نامی ، باعث افزایش 20% گشتاور استارت را و این می تواند سبب آسیب دیدگی موتور بدلایل ( افزایش جریان در بار نامی و حرارت ) شود .

 

 

2- فرکانس : تغییرات در فرکانس می تواند بر روی مشخصات موتور همچون گشتاور و سرعت تاثیر گذار باشد . اگر به جدول زیر توجه فرمائید ، بعنوان مثال ملاحظه خواهید نمود که افزایش 5% در فرکانس باعث افزایش 5% در سرعت در بار نامی و کاهش 10% در گشتاور استارت باشد .

3- ارتفاع : عامل موثر دیگر ارتفاع است . موتورها معمولا” برای ارتفاع تا 1100 متر( 3300 feet ) از سطح تراز دریا درنظر گرفته می شوند . در ارتفاع بالاتر از این مقدار هوا رقیقتر بوده و حرارت براحتی انتقال نمی یابد .بنابراین فاکتور ارتفاع بر روی توان موتور تاثیر می گدارد. مثلا” در استاندارد NEMA یک موتور 50HP در ارتفاع 6600 فیت دارای توان 47HPخواهد بود . ( فاکتور ارتفاع 0.94 است . ) جدول زیر تاثیرات این فاکتور را در دمای محیط 40 درجه سانتیگراد نشان می دهد :

 

تشخیص مشخصات موتور ها از روی پلاک آنها

توضیحات شماره
علامت کارخانه ، شرکت سازنده 1
تیپ موتور ، مدل 2
نوع جریان ( مستقیم = G ) ، ( تکفاز = E ) ، ( سه فاز = D ) 3
نوع جریان مانند GEN ( ژنراتور ) ، MOT ( موتور ) 4
شماره سریال 5
نوع اتصال استاتور مانند : ستاره – مثلث 6
ولتاژ نامی 220 / 380 ولت 7
جریان نامی بر حسب آمپر 8
قدرت نامی معمولا” برحسب( KW ) 9
نوع مورد استفاده ( S ) 10
ضریب توان : کسینوس فی 11
جهت گردش : R ,L 12
دور نامی : RPM 13
فرکانس نامی : 50Hz یا 60 Hz 14
در ماشینهای مستقیم ( تحریک ) LFR – ERR ( روتور ) در ماشینهای آسنکرون 15
نوع اتصال سیم پیچ روتور 16
تحریک نامی و نیز ولتاژ روتور در حالت سکون 17
جریان تحریک نامی – جریان روتور 18
کلاس عایق مانند : Y , A , B , C , … 19
نوع حفاظت IP 20
وزن به تن در ماشینهای بیشتر از 1 تن و یا به کیلوگرم 21
توضیحات دیگر مانند وسیله خنک کننده : IC 22

 

انواع اتصال در موتورهای سه فاز

موتورهای سه فاز در شبکه سه فاز به دو روش به سه فاز شبکه وصل می شود : ستاره یا مثلث . البته تمام موتورهایی که قرار است به روش مثلث به سه فاز وصل شود از روش 2 ضربی ( ستاره – مثلث ) استفاده می کنند.

اگر بر روی تخته کلم دقیق شویم آرایش سر و ته سیم پیچی هر فاز را درست مقابل هم نمی بینیم.مثلا در فاز R سیم پیچی با ابتدای u و انتهای x مشخص شده است ولی بر روی تخته کلم درست مقابل هم قرار ندارند به آرایش تخته کلم در شکل زیر دقیق شوید:

 

علت جابجا قراردادن نام سر وته سیم پیچهای هر فاز در تخته برای راحتی در ایجاد نوع اتصال ستاره یا مثلث برای وصل به شبکه است.

موتوری که پیچیده شد چگونه باید به سه فاز مدار وصل شود؟؟

اگر تمام ته های هر سیم پیچی در هر فاز را به هم بسته و سر های هر یک را بطور مجزا به سه فاز RST وصل کنیم این اتصال از نوع ستاره است .در شکل زیر نمونه اتصال ستاره را برایتان رسم کرده ام.

توصیه می کنم تمام موتورهایی که در کارگاه برای کار تمرینی انجام می دهید حتما با این اتصال به شبکه وصل کنید . علت این کاررا در ادامه توضیح خواهم داد.

ناگفته نماند نامگذاری فازها امری قراردادی است و فرقی نمی کند که شما سر هایuvw را به هر یک از فازهای RST به شکل متفاوت وصل نمایید.

اما اگر از شش سیمی که بعد از سیم پیچی از موتور بیرون می آید را به شکل زیر به هم بسته و از سه اتصال بوجود آمده هر یک را به سه فاز شبکه وصل کنیم این اتصال از نوع مثلث است. یعنی u ورودی یا سر سیم پیچی در فاز R را با z انتهای سیم پیچ در فاز T به هم وصل کرده در ادامه v به عنوان ورودی فاز S را با x انتهای سیم پیچ در فاز اول به هم اتصال داده و نهایتا w به عنوان ورودی برای فاز T را با y همان انتهای سیم پیچی در فاز S را به هم می بندیم . قطعا سه اتصال خواهیم داشت که اگر این سه بطور مجزا به سه فاز شبکه وصل شود این اتصال از نوع مثلث است.

در شکل زیر نمونه ای از اتصال مثلث را رسم کرده ام که ملاحظه می کنید:

فرق بین اتصال ستاره و مثلث چیست ؟

ابتدا سعی می کنيم آنچه که در مورد هر یک از اتصالها اتفاق می افتد را به صورت تشریحی و کالبد شکافانه برایتان نشان دهيم. در اتصال ستاره آنچه که اتفاق می افتد به قرار زیر است:

انتهای تمام سیم پیچی که به هم وصل شده اند را در وسط قرار داده ام xyz , و آن را با علامت پیکان مشخص نموده ام.هر یک از سیم پیچ ها که با اختلاف 120 درجه نسبت به هم در استاتور قرار گرفته اند نیز به همان اختلاف بصورت شمایی رسم شده اند. آنچه ازاین شکل برداشت می شود این است که این مجموعه از روابط برداری تبعیت کرده و ما به حقایق جالبی خواهیم رسید قبل از این که محاسبات برداری را انجام دهم لازم است به آگاهی شما برسانم که در موتورهای سه فاز ما یک جریان و ولتاز خطی داریم که مربوط به شدت جریان و ولتاز ورودی(بین دو فاز) در مسیر کابل به داخل موتور است ویک ولتاژ و شدت جریان فازی هم داریم که مربوط به شدت جریان داخل سیم پیچ و ولتاژی است که در دوسر سیم پیچها وجود دارد.

در اتصال ستاره می توان طبق شکل vp1 و vp2 را به عنوان دو برداری در نظر گرفت که اگر برآیند آنها را حساب کنیم برابر با برداری شودکه با نام VL از فاز R در حال ورود به موتور می باشد.برای محاسبه برآیند این دو بردارکافی است به موازات هر یک از بردارهای VP1 و VP2 خطی رسم کنیم تا در نقطه ای یکدیگر را قطع کنند. برآیند این دو بردار از نقطه تقاطع اول شروع شده تا به محل تقاطع اخیر ختم می شود . و طبق قانون بردار خواهیم داشت:

VL2 = VP12 + VP22 +2 VP1VP2 . COS 120

چون مقدار VP1 و VP2 با هم برابر است می توان نوشت :

VL2 = 3VP2 . 2. COS 120

کسینوس 120 درجه 2/1 است بنابراین رابطه به شکل زیر در می اید.

VL2 = 3VP2 . 2. 1/2 VL2 = 3VP2 VL = VP

ولتاز خطی در اتصال ستاره برابر ولتاژ فازی است و جریان خطی وفازی در این نوع اتصال باهم برابرند.به بیان ساده تر :

vL = vp

IL = Ip

اما در مورد اتصال مثلث شکل به صورتی در می آید که می بینید.

در اتصال مثلث ولتاز خط با ولتاژ فازی با هم برابر ولی جریان خطی رادیکال سه برابر جریان فازی است.

VL = VP IL = √3 . IP

همانطور که می بینید جریان خطی یا همان جریانی که از مسیر کابلها وارد موتور می شود در اتصال مثلث رادیکال سه برابر جریان فازی ( مقدار جریانی که داخل سیم پیچ در حال عبور است) می باشد . یعنی اگر درموتوری در داخل سیم پیچ مقدار IP برابر با 3 آمپر باشد و اتصال از نوع مثلث باشد جریان خطی آن برابر با :

IL = √3 . IP IL = √3 . 3 IL = 5.19 A

خواهد داشت که این مقدار آمپر در لحظه راه اندازی برای موتور در نقاط حساس مثل اتصالها – کنتاکتها – ترمینالها خطرناک بوده باعث خرابی و سوختن قطعات می گردد بنابراین در راه اندازی موتورهایی که می توانند به شکل مثلث کار کنند راه اندازی به شکل دو ضرب انجام می شود. یعنی از کلید های ستاره مثلث استفاده شده ابتدا در لحظه راه اندازی کلید برروی اتصال ستاره است و بعد از را ه افتادن موتور کلید را به محل اتصال مثلث می چرخانیم.

با توجه به موارد ذکر شده در بالا چند نکته را همیشه به خاطر داشته باشید:

1- اگر موتور شما تمرینی است و آن را در کارگاه پیچیده اید حتما با اتصال ستاره راه اندازی کنید و مطلقا از مثلث استفاده نکنید.

2- اگر موتوری سیم پیچی آن برای کارکرد در حالت مثلث است ابتدا با ستاره بعد به حالت مثلث در آورید.

3- موتوری که برروی پلاکش در بخش ولت نوشته شده باشدV220 /380 این موتور در شبکه برق ایران فقط با ستاره کار می کند . ولی اگر برروی پلاک موتوری در بخش ولت عدد V380 /660 قید شده باشد این موتور برای اینکه توان واقعی خود را داشته باشد باید بااتصال مثلث کار کند اما گفتم که ابتدا با ستاره راه اندازی شده بعد به حالت مثلث درمی آید. هر چند که می توان از این نوع موتورها به شکل ستاره هم استفاده نمود.

4- اگر بخواهیم از یک سوم قدرت موتوری که سیم پیچی آن براساس اتصال مثلث است استفاده کنیم می توانیم از اتصال ستاره استفاده نماییم.

5- همانطور که جریان و ولتاز خطی و فازی داریم قطعا توان فازی و خطی هم خواهیم داشت معمولا توان اولیه یا دریافتی موتورها از رابطه ای استفاده می شود که در آن از ولتاز و جریان خطی استفاده می شود.که در حالت ستاره به شکل زیر است:

P = √3 . VL . IL . COS φ

این توان رابا نام توان اکتیو می شناسیم واگر بخواهیم همین توان را براساس ولتاز و جریان فازی بیان کنیم رابطه به شکل زیر در می آید.ِ

P = 3Vp . IP . COS φ

سیم پیچی

معمولا در الکتروموتور ها تعداد شيارها را با علامت z نشان می دهند.به خوبی می دانيم که فضايی که کلافهای سيم پيچی در آن قرار دارد را استاتور گويند.وبخش گردنده را روتور می نامند. الکتروموتوری که در بخش استاتور دارای ۲۴ شيار باشد آنرا به شکل 24=z نشان می دهند.

نکته مهم بعدی اين است که موتور های ۳ فاز که برق تغذيه کننده موتور از سه فاز R-S- T می باشدبرای هر يک از فاز ها به صورت مساوی تعداد شيارهايی اختصاص می يابد که هريک از فازها به اندازه ۱۲۰ درجه الکتريکی با هم فاصله دارند.

٬٬٬ همانطور که قبلا مشاهده کرديد بين فازهای ورودی در موتورهای ۳فاز ۱۲۰ درجه الکتريکی فاصله وجود دارد .برای درک موضوع توضيح زير لازم است.در موتورهای القايی سه فاز بين روتور واستاتور هيچگونه ارتباط الکتريکی وجود ندارد و آنچه که باعث گردش روتور می شود اگر بخواهيم بطور کاملا خلاصه بگوييم بايد عرض کنيم اثر شار مغناطيسی که توسط سيم پيچها به کمک جريان ورودی در استاتور ايجاد می شود عامل گردش خواهد بود. جريان ورودی در کلافهای استاتور ايجاد فضای مغناطيسی ميکند .

در واقع هر يک از شيار ها به يک قطب آهنربايی تبديل می شود. حال اگر محيط دوار استاتور را ۳۶۰ درجه منظور کنيم اگر اين مقدار بر تعداد شيارهای استاتور مثلا ۲۴ تايی تقسيم کنيم و آن را به تعداد جفت قطبهای فضای داخلی استاتور ضرب کنيم زاويه الکتريکی هر شيار قابل محاسبه خواهد بود. αez .

تعداد قطبهای آهنربايی که در داخل استاتور ايجاد می شود با نوع سيم پيچی ونوع کلاف زنی قابل تغيير وکنترل خواهد بود. مثلا طوری کلافها را جا بزنيم که موتور به شکل ۴ يا ۲ يا ۶ يا ۸ قطب (N يا S ) کار کند. تعداد زوج قطبها را با P نمايش می دهند. α ez=360/24*P

برای سیم پیچی موتورهای سه فاز یا تک فاز همان طور که قبلا گفته شد باید یک سری اطلاعات فنی را درباره موتوری که در دسترس داریم بدست آوریم.این اطلاعات معمولا از روی پلاک موتور بدست می آید .

(البته هر چند که می توان از راهکارهای دیگری به این مهم رسید. مثلا اگر موتوری خالی بدون سیم و نیز بدون پلاک برای ما بیاورند محاسبه نوع سیم پیچی این موتورها نیز امکان پذیر است. در این موتور ها با در نظر گرفتن و نیز یادداشت اطلا عات فیزیکی موتور مثل قطر داخلی استاتور Ds و ارتفاع یوغ Hc و طول هسته Ls ونیز محاسبه مقدار شار مغناطیسی Bmو مقدار اندکسیون یوغ Bc و لحاظ ضریب K می توان مقدا رتوان ثانویه را بدست آورد.)

اندازه گیری یوغ استاتورو نقش ان

یکی از عوامل مهم در سیم پیچی موتور ها اندازه گیری مقدار یوغ استاتور است . اگراز محیط بیرونی استاتور را که به پوسته یا همان بدنه مماس شده تا ابتدای لبه قاعده شیارها رابصورت شعاعی اندازه بزنیم این مقدار برابر با اندازه یوغ خواهد بود. یادمان باشد که مقدار بر اساس میلی متر می باشد. این مقدار را با Hs نشان می دهیم.نمایی از یوغ در بریده ای ازاستاتورکه با پیکان دو سر مشخص شده را می بینید.

در ادامه باید اندازه قطر داخلی استاتور را نیز برداریم. اگر استاتور را دایره فرض کنیم اندازه گیری قطر آن بطور عملی کاری بسیار ساده خواهد بود. این مقدار هم براساس میلی متر و به شکل Ds نمایش داده می شود.

حال به این نکته توجه کنیدکه اندازه یوغ فضایی است که شار مغناطیسی در ان جریان یافته و در فضای استاتور مدار مغناطیسی کامل می شود.کمی به این رابطه توجه کنید.

Hc = Bm . Ds / Bc .P

در این رابطه Hc همان ارتفاع یوغ است که شما اندازه زده اید. D هم مقدار قطر داخلی است که این کمیت راهم پیدا کرده اید. Bm مقدار شاری است که توسط استاتور به هنگام کار در فضای داخلی آن ایجاد می شود البته مقدار ماکزیمم آن بر اساس مقدار D در نموداری رسم شده است . در این نمودار مقدار ماکزیمم شار برای قطبهای مختلف 2 – 4 و 6 قطب را نشان می دهد. Bc مقدار شار داخل یوغ است که معمولا برابر با 5/1در نظر می گیرند. p تعداد جفت قطبهای موتور است.مثلا موتوری که 4 قطب است مقدار p برابر با 2 خواهد شد.

نکته بسیار مهم در این رابطه این است که تعداد قطبهای موتور با ارتفاع یوغ رابطه عکس دارد. یعنی هرچه ارتفاع بزرگتر باشدP کوچکتر و موتور دارای سرعت بیشتری است.

نمودار مربوط به شار مغناطیسی Bm را می توانید در ادامه ملاحظه کنید.

در این نمودار منحنی قرمز رنگ برای موتورهای 2 قطب یعنی 2p=2 منحنی مشکی رنگ برای موتورهای 6 قطب و منحنی آبی رنگ هم برای موتورهای 4 قطب در نظر گرفته شده است.

حال شما با کمیتهای که در دست دارید Hs ( مقدار ارتفاع یوغ) Ds ( مقدار قطر داخلی استاتور ) و Bc ( ماکزیمم شار داخل یوغ که حدود 5/1 است) و نیز مقدار شار واقعی یعنی Bm( از نمودار مربوطه) می توانید تعداد قطبهای موتوررا محاسبه نمایید.

مثال:استاتور موتوری داریم که دارای یوغ 30 میلی متری واندازه قطر 110 میلی متر می باشد.اگر مقدار اندکسیون داخل یوغ را 1.5 فرض کنیم تعداد قطبهای این موتور را طبق جدول و رابطه یوغ حساب کنید؟

Ds=110 Hc=30 Bc=1.5

با توجه به داده هابه جدول داده شده نگاه می کنیم منحنی که بیشترین شار را برای این قطر نشان می دهد را انتخاب می کنیم.منحنی آبی رنک بیشترین مقدار را نشان میدهد. از روی عدد 110 برروی محور افقی خط عمودی رسم می کنیم .قطعا در جایی منحنی افقی را قطع خواهد کرد.از نقطه بدست آمده عمودی به سمت محور عمودی منحنی رسم مینماییم.عددی که بدست می اید حدود88/. می باشد.حال طبق رابطهHc = Bm . Ds / Bc .P مقدار p بدست می اید.

p=Bm . Ds / Hc . Bc p=0.88 . 110 / 1.5 . 30 p=2 2p = 4

موتور چهار قطبی است

اما ما مبنا را بر این قرار داده ایم که موتور حال حاضر ما دارای پلاک بوده وقرار است مشخصات آنرا بدست آوریم. گزینه های روی پلاک را (مواردی که کاربردی تر هستند ) را توضیح می دهیم.

بحث پلاک خوانی

1- MARK : در این بخش نشانه یا آرم کارخانه تولید کننده البته در بالای پلاک وبا اندازه ای بزرگتر از سایر گزینه ها درج می شود. اهمیت این گزینه زمانی مهم جلوه می کند که لازم است درباره اعتبار کارخانه تولید کننده بدانیم . برخی تولید کننده ها ی الکتروموتور از اعتبار فوق العاده ای در زمینه تولید موتور های مرغوب برخوردارند . معمولا در این بخش نام کارخانه هم درج می شود.

2- TYPE : در این بخش بطور معمول موتور را از جهت کارکرد در برق AC یا برق DC معرفی می کند.هر چند که در برخی موتور ها این گزینه شامل کدها و اعدادی می شود که نماینگرمشخصات فیزیکی موتورخواهد بود.

3- FRAM : در این قسمت اعدادی قید می شود که آنها توسط انجمهای ملی تولید کننده قابل شناسایی است که بیشتر شامل قالبهای اندازه 42 -46 و56 می باشد.

4- Hp : در مفابل آن عددی قید می شود که نماینگر مقدار توان خروجی موتور می باشد. این توان بر اساس اسب بخار است و هر اسب بخار هم حدود 736 وات می باشد.

5- Ph : چند فاز بودن موتور را عنوان می کند برای موتور های سه فاز عدد 3 و برای موتور های تک فاز عدد 1 قید می گردد. ( البته ناگفته نماند که می توان با راهکارهایی بسیار ساده از موتور سه فاز به جای موتور تک فاز هم استفاده نمود . )

6- RPM : مخفف ROUNT PER MINUTE ( یعنی دور در دقیقه) می باشد. این عدد مقدا رسرعت روتور را به ما می دهد. قطعا مقدار سرعت روتور از مقدار سرعت سنکرون در فضای استاتور کمتر است .البته این کاهش هم چندان زیاد نیست . من معمولا با دیدن این عدد به مقدار سرعت استاتور می رسم و براحتی تعداد قطبهای موتور را حساب می کنم .کافیست شما مقادیر سرعت سنکرون را در فرکانس برق 50 هرتز بدانید

سرعت سنکرون اگر به مقدار 3000 دور در دقیقه باشد این موتور در فضای استاتور خود ایجاد 2قطب متفاوت N و S نموده است بنابر این اگر تعداد قطبها را با P2 نشان دهیم برای این سرعت در این موتور 2P=2 خواهد بود. خوب اگر موتور به شما دادند که برروی پلاکش عدد 2850 دور بوده این سرعت روتور است که به دلیل لغزش از مقدار دور سنکرون کاهش یافته است.

از مقدار لغزش صرف نظر کرده و از رابطه Ns=60 * f/p تعداد قطبهای موتور را حساب می کنیم. در این رابطه Ns همان سرعت سنکرون است که الان مقدار آنرا داریم (3000) و f مقدار فرکانس برق شهری است که در ایران 50 هرتز است.( لازم به یاد آوری است در این رابطه علامت * نشانه ضربدر و علامت / نشانه تقسیم می باشد.) با جایگزینی اعدادی که داریم مقدارP بدست خواهد آمد.P=1 و 2Pبرابر با 2 خواهد شد. پس وجود RPM بر روی پلاک خیلی از مسایل بربوط به سیم پیجی را برای ما حل خواهد کرد.

7- HZ یا SYCLES : در این بخش مقدار فرکانس برق شهری که موتور بر اساس آن طراحی شده است را نشان می دهد. برای موتورهای شبکه ایران این عدد 50 است.

8- HOUSING : در این بخش به ما گفته می شود که موتور باید در محیط بسته یا رو باز کار کند .

9- Volt : از جمله مهمترین بخش در امر پلاک خوانی توجه به این گزینه می باشد . در واقع اگر کسی از اعداد روی پلاک در این بخش اطلاعاتی نداشته باشد باید با اطمینان گفت که چیزی از موتور نمی داند

معمولا در موتور های سه فاز در بخش ولت دو عدد قید می شود که به وسیله خط کسری یا ممیز از هم جدا می شوند مثلV220/380 و یا V115/230 . این اعداد بیانگر این موضوع هستند که این موتور در چه شبکه با چه ولتازی کار می کند . برق شبکه معمولا در ولتاز های 115 – 230- 440 و 660 می باشد.

از دو عددی که بر روی پلاک ارائه شده عدد کمتر همان ولتازی است که باید از شبکه به سر هر فاز از سیم پیچی موتور داده شود. اگر ولتاز شبکه از مقدار راهنمایی شده بیشتر بود الزاما این موتور باید بصورت اتصال ستاره کار کند . و اگر موضوع بر عکس بود یعنی ولتاز شبکه از عدد اول ارائه شده کمتر بود می توان موتور را هم مثلث و هم ستاره به شبکه وصل نمود. ( به خاطر داشته باشید که اتصال های ستاره و مثلث بحث های بسیار ساده و راحتی هستند.

در شبکه برق ایران که ولتاز400/230 داریم موتوری که بر روی پلاکش اعداد 660/380 قید شده باشد این موتور برای این که بتواند توان واقعی خود را داشته باشد باید بااتصال مثلث به شبکه وصل شود و اگر بخواهیم از 3/1 قدرت آن استفاده نماییم باید از اتصال ستاره استفاده کنیم.

10- Amps : مقدار جریانی که موتور زیر باردر ولتازوجریان اسمی خواهد کشید دراین بخش قید میگردد.

 

الکتروموتور وعيب يابي آن

موتور هاي الکتريکي (آسنکرون-يونيورسال-قطب چاکدار ) عيب يابي ورفع عيب موتور هاي مذکور .
موتور ها مهمترين اجزايي هستند که در لوازم برقي گردنده بکار مي روند.موتور ها انرژي الکتريکي را به انرژي مکانيکي تبديل مي کنند. الکتروموتور ها را مي توان به سه دسته کلي تقسيم کرد:
1- موتور هاي آسنکرون
2 – موتور هاي يونيورسال
3- موتور با قطب چاکدار
1- موتور هاي آسنکرون:
که با برق متناوب کار مي کنند از دو قسمت روتور واستاتور ساخته شده اند.با روشن شدن موتور سيم پيچ هاي درون شيار هاي استاتور يک ميدان مغناطيسي دوار بوجود مي آورند که اين ميدان برروتور که قسمت گردنده موتور وداراي محور انتقال حرکت مي باشد نيز اثر گذاشته ودر آن خاصيت مغناطيسي بوجود مي آيد .به هر حال با بوجود آمدن قطب هاي مغناطيسي هم نام وغيرهم نام عمل جذب ودفع انجام شده که باعث حرکت چرخشي روتور مي گردد.براي راه اندازي موتور ها از حالت سکون روش هاي مختلفي بکار مي برند که مهمترين آن ها عبارتند از:
الف- آسنکرون با راه انداز غير خازني (کلاجي ) در اين موتور به غير از سيم پيچي هاي اصلي يک سري سيم پيچ کمکي نيز قرار دارد که ميدان مغناطيسي ديگري با فاصله زماني با ميدان مغناطيسي اصلي بوجود مي آورد.که باعث چرخش پرقدرت تر موتور مي گردد. پس از اين که سرعت موتور به 75 درصد سرعت اسمي رسيد کلاج که تحت تاثير نيروي گريز از مرکز کار مي کند به عنوان يک کليد عمل کرده وسيم پيچ کمکي را از مدار خارج مي کند.
ب – آسنکرون با راه انداز خازن موقت – اين موتور ها داراي علامت اختصاري CSMمي باشند وداراي يک خازن الکتروليتي با ظرفيت حدود 200 الي 500 ميکرو فاراد است که باسيم پيچ کمکي بطور سري بسته شده وهر دوي آنها باسيم پيچ اصلي موازي بسته مي شوند. خازن وسيم پيچ کمکي يک اختلاف فاز ودو ميدان مغناطيسي بوجود مي آورد که باعث چرخش موتور مي گردد. در اين موتور نيز کليد گريز از مرکز سيم پيچ کمکي را از مدار خارج مي کند.
ج – آسنکرون با راه انداز خازن موقت وخازن دايم.(با علامت اختصاري TCM) – يکي از خازن ها پس از راه اندازي از مدار خارج شده وخازن ديگر در حالتي که با سيم پيچ کمکي سري مي باشد در مدار باقي مي ماند.
د – آسنکرون با راه انداز خازن دايمي ( PSCM) در اين موتور ها که داراي قدرت کم تري نسبت به موتور هاي قبلي هستند از يک خازن که با سيم پيچ کمکي سري بسته شده است استفاده شده و کليد گريز از مرکز ندارند بنابر اين خازن به همراه سيم پيچ کمکي هميشه در مدار باقي است.

شناسايي سيم پيچ هاي اصلي وکمکي :

1- سيم پيچ هاي اصلي در زير شيار ها و سيم پيچ کمکي در رو قرار دارند.
2- سطح مقطع سيم هاي کمکي هميشه از سيم هاي اصلي کمتر است.
3- سيم پيچ کمکي داراي مقاومت بيشتري (اهم بيشتر ) نسبت به سيم پيچ اصلي است وضمنا” خازن با سيم پيچ کمکي سري شده است.
عيب يابي موتور هاي آسنکرون – معيوب شدن موتور ها يا مربوط به قطعات برقي مثل سيم پيچ ها وخازن است يا مربوط به قطعات مکانيکي مثل بلبرينگ و بوشن ها .

عيب يابي قطعات برقي :

عيب1- موتور اصلا”روشن نشده و جرياني از مدار عبور نمي کند.
علت1 -جايي از مدار قطع است.
رفع عيب1- با آوامتر تمام مدار شامل پريز،دوشاخه ،سيم هاي رابط،کليدها واتصالات در تخته کلم موتور را بر رسي وعيب مربوطه را بر طرف مي نماييم.
عيب2- موتور اصلا”روشن نشده وجرياني از مدار عبور نمي کند.
علت2 -سوختن فيوز.
رفع عيب2-ابتدا علت سوختن فيوز که مربوط به اتصالي مي باشد را بررسي نموده پس از آن به تعويض فيوز مي پر دازيم.
عيب3-موتور پس از روشن شدن خيلي زود داغ مي شود.
علت3-موتور نيم سوز است.
رفع عيب3- در هر کدام از سيم پيچ هاي کمکي واصلي ميتواند اتصال حلقه ويا اتصال کلاف به کلاف بوجود آمده باشد.بنابر اين مسير جريان الکتريکي کوتاه شده در نتيجه ميدان مغناطيسي مناسب براي گردش بوجود نمي آيد وباعث داغي موتور ميشود.موتور هاي نيم سوز جريان بيشتري نسبت به موتور هاي سالم مشابه خود دريافت مي کنند. براي رفع عيب در صورتي که محل اتصالي مشخص باشد وبتوان به نحوي آن را عايق نمود اقدام کرده ودر غير اين صورت موتور بايد دو باره سيم پيچي شود.
عيب4- موتور پس از روشن شدن خيلي زود داغ مي شود.
علت4- زياد بودن بار موتور.
رفع عيب 4- هر موتوری   داراي توان مکانيکي مشخص است در صورتي که بيش از توان مربوطه از موتور نيرويي خواسته شود جريان بيشتري از سيم ها عبور مي کند که با سطح مقطع وتعداد دور آن ها همخواني ندارد وباعث گرما در موتور و آسيب ديدن آن خواهد شد .براي رفع عيب بايد بار موتور را کم نموده واز کار مداوم آن خود داري کرد.
عيب5- موتور پس از روشن شدن خيلي زود داغ مي شود وزير بار مي خوابد.
علت 5- عمل نکردن کليد گريز از مرکز .
رفع عيب 5 – علاوه بر جريان در يافتي توسط سيم پيچ اصلي ،سيم پيچ کمکي نيزچون از مدار خارج نمي شود جريان دريافت مي کند .براي اطمينان از صحت عمل کرد کليد گريز از مرکز بايد به صداي کنتاکت آن در حالت دور گرفتن موتور وهمچنين از دور افتادن آن گوش کرد .براي رفع عيب بايد کليد سرويس ويا تعويض شود.
عيب 6- با روشن کردن موتور صداي زيادي شنيده مي شود ولي به گردش در نمي آيد.
علت 6- خرابي کليد گريز از مرکز .
رفع عيب 6- درصورتي که کنتاکت هاي کليد در حالتي که موتور خاموش بوده وصل نشده باشد.درزمان شروع بکار ،سيم پيچ راه انداز در مدار قرار نگرفته وطبيعتا”موتور بگردش نمي افتد.براي رفع عيب کليد را با آوامتر امتحان ودر صورت معيوب بودن تعويض مي نماييم.
عيب 7- با روشن شدن موتور صداي زيادي شنيده مي شود ولي به گردش در نمي آيد.
علت 7 – قطعي سيم پيچ اصلي يا کمکي .
رفع عيب 7 – به کمک آوامتر هر دو مدار را امتحان ودر صورت مشخص بودن محل پارگي ،آن را تعمير مي نماييم.
عيب 8 – با روشن شدن موتور صداي زيادي شنيده مي شود ولي به گردش در نمي آيد.
علت 8 – نيم سوز بودن يا سوختگي موتور .
رفع عيب 8 – موتور سريعا”داغ شده وجريان زيادي مي کشد همچنين بوي سوختگي ويا دود از مشخصه هاي آن است.رفع عيب سيم پيچي مجدد است.
عيب 9 – با روشن کردن موتور صداي زيادي شنيده مي شود ولي به گردش در نمي آيد.
علت 9 – خرابي خازن.
رفع عيب 9 – خازن ها به منظور راه اندازي موتور بکار رفته اند خازن را مطابق با مطالبي که در مورد عيب يابي خازن ها گفتيم آزمايش نموده در صورت نياز آن را تعويض مي کنيم.
عيب 10 – با روشن کردن موتور فيوز عمل کرده مدار قطع مي شود.
علت 10 – اتصال کوتاه در مدار اصلي موتور .
رفع عيب 10 – دوشاخه ،سيم هاي رابط وجعبه اتصالات موتور را بررسي کرده در صورت پيدا کردن محل اتصالي آن را مرتفع مي نماييم.
عيب 11 – با روشن کردن موتور فيوز عمل کرده مدار قطع مي شود.
علت 11 – سوختگي کامل موتور
رفع عيب 11 – با مشاهده استاتور وسيم پيچ هاي مربوطه عيب حاصل تاييد گرديده وبراي رفع آن بايد موتور سيم پيچي گردد.
عيب 12 – با روشن کردن موتور فيوز عمل کرده مدار قطع مي شود.
علت 12 – اتصال کوتاه در خازن
رفع عيب 12 – اگر با جدا کردن خازن از مدار و به برق زدن موتور فيوز ديگر عمل نکرد عيب از خازن است وبايد آن را تعويض نمود.

عيب يابي قطعات مکانيکي.

عيب 1 – محور موتور چه در حالت روشن وچه در حالت خاموشي به سختي حرکت مي کند.
علت 1 -بطور کلي خرابي بلبرينگ ها وياطاقان هاي دو سر محور موتور .
رفع عيب 1 – خرابي بلبرينگ ها شامل الف – ترک برداشتن حلقه هاي بلبرينگ،ترک بر داشتن ساچمه ها و غلطک ها .ب – بوجود آمدن حفره وشيار در سطح داخلي حلقه ها که علت آن وجود ذرات سخت بين ساچمه وحلقه مي باشد.ج – گريپاژ (عدم چرخش ساچمه ها ) که ناشي از کثيفي و سخت شدن گريس بلبرينگ مي باشد. د – فرسودگي وپوسيدگي – که به علت جازدن نادرست بلبرينگ ونفوذ رطوبت وعدم گريس کاري مناسب بوجود مي آيد. براي تشخيس عيوب گفته شده بلبرينگ را از نظر ظاهري مشاهده ولقي بين حلقه وساچمه را امتحان مي کنيم . همچنين با چرخش بلبرينگ اگر صداي غير عادي شنيده شود دليل برخرابي آن مي باشد که بايد تعويض گردد.
عيب 2 – گاهي اوقات محور موتور با صداي زيادي مي چرخد.
علت 2 – چرخش حلقه بيروني بلبرينگ در جاي خود.
رفع عيب 2 – جازدن نادرست بلبرينگ وعدم گريس کاري مي تواند باعث لقي بلبرينگ در جاي خود شود . رفع عيب-تعويض بلبرينگ در صورت معيوب بودن بوش زدن وتراش کاري جاي آن يا تعويض دري موتور.
2-موتور هاي يونيورسال
اين موتور ها که هم با جريان متناوب وهم با جريان مستقيم کار مي کنند از دو قسمت اصلي تشکيل شده اند:
الف:قطب ها (بالشتک ها )
ب – آرميچر
در اين موتور ها ميدان مغناطيسي قطب ها بر خلاف موتور هاي آسنکرون دوار نيست وسيم پيچ آرميچر که قسمت گردنده موتور است با سيم پيچ قطب ها سري بسته شده است . پس از عبور جريان از مدار فوق خطوط قواي مغناطيسي قطب ها با خطوط قواي آرميچر عکس العمل نشان داده وباعث گردش موتور مي شود .سرعت اين موتور ها بالا بوده وخيلي سريع به سرعت نهايي مي رسند. از اين موتور ها در اکثر لوازم برقي خانگي مثل چرخ گوشت ،آب ميوه گيري ،هم زن ،آسياب و… استفاده مي شود. براي برقراري ارتباط قطب ها با آرميچر که گردان مي باشد از قطعه اي بنام کلکتور استفاده مي شود . کلکتور از تيغه هاي مسي کنار هم تشکيل شده است که به شکل استوانه روي محور قرار دارد . تيغه ازهمديگر واز محور آرميچر بوسيله ميکا عايق شده اند وسيم پيچ هاي داخل شيار آرميچر به وسيله پيچک ها به يکديگر وصل مي شوند. دو قطعه ذغال به همراه فنر پشت آن ها ارتباط قطب ها با کلکتور را ميسر مي سازد.

عيب يابي موتور هاي يونيور سال :

عيب 1 – موتور روشن نمي شود.
علت 1 – نبودن برق.
رفع عيب 1 – پريز ،دوشاخه وسيم رابط را با آوامتر آزمايش نموده ورفع عيب مي کنيم.
عيب 2 – موتور روشن نمي شود.
علت 2 – کوتاه شدن ذغال ها.
رفع عيب 2 – چون ذغال ها جزيي از مدار سري موتور مي باشد.با کوتاه شدن آن ها ممکن است مدار قطع گردد وموتور روشن نشود با تعويض ذغال رفع عيب مي شود در صورت نبودن ذغال در اندازه مورد نظر مي توان از ذغال بزرگ تر استفاده کرده وبا سوهان آن را به اندازه دلخواه در آورد.
عيب 3 – موتور روشن نمي شود.
علت 3 – خرابي فنر ذغال ها
رفع عيب 3 – به منظور درگير بودن هميشگي ذغال با کلکتور از قطعه اي فنر در پشت ذغال استفاده مي شود گاهي در اثر رطوبت ويا کار زياد خاصيت خود را از دست داده ومدار قطع مي گردد. باتعويض فنر رفع عيب مي شود

روشهای مختلف راه اندازی موتورهای آسنكرون

موتورهای آسنكرون با توجه به قدرت و ولتاژ آن به طرق مختلف راه اندازی ميشوند و با توجه به اينكه موتور در لحظه شروع به كار جريان زيادی ميكشد و اين جريان زياد علاوه بر اينكه به خود موتور صدمه ميزند به مصرف كننده های ديگری كه از اين خط تغذيه می كنند لطمه زده و كار آنها را مختل می سازد.
بنابراين برای كم كردن جريان شروع به كار موتور بايد چاره ای انديشيد؟؟
معمولاً به روشهای زير راه اندازی ميشود در نتيجه جريان راه اندازی‌ كم ميشود :
1. به طور مستقيم
2. توسط كليد يا مدار ستاره – مثلث
3. توسط كمپانساتور
4. راه اندازی بوسيله اضافه كردن مقاومت در مدار روتور
5. راه اندازی بوسيله داخل كردن مقاومت در مدار استاتور
1- راه اندازی موتور به طور مستقيم : برای‌ موتورهايی كه بزرگ نيستند و‌ آمپر زيادی از شبكه نمی كشند بوسيله يك كليد سه قطبی به شبكه متصل ميشوند .
2-راه اندازی ستاره – مثلث : ابتدا ولتاژ اوليه را كه بر هر فاز متصل ميشود ،‌ را كم مى كنيم سپس وقتي كه موتور به دور نرمال خود رسيد ولتاژی كه به هر فاز می رسد را زياد می كنيم .
بنابراين در لحظه اول كليد به حالت ستاره بوده يعنی ولتاژ دو سر هر فاز به u/√3 تقليل می يابد در نتيجه موتور با توان 3/1 توان نامی خود كار می كند .
استعمال كليد روی انواع موتورها با روتور قفسه ای يا روتور سيم پيچی امكان پذير است . ولی در موتورهايی كه با بار زياد كار می كنند از كليد برای راه اندازی استفاده نمی شود . چون گشتاور مقاوم بار زياد است .
3-راه اندازی توسط كمپانساتور : اين وسيله راه اندازی كه اتوترانسفورماتور كاهنده است بين موتور و شبكه قرار می گيرد . اين طريق راه اندازی به دليل اينكه جريان شروع به كار و گشتاور شروع به كار هر دو به يك نسبت پايين می آيند خيلی خوب است . ولی چون هزينه آن گراناست فقط در موتورهايی كه قدرت زياد دارند استفاده می شوند.
4-راه اندازی موتورهای قفسه ای بوسيله قرار دادن مقاومت سر راه استاتور : برای جلوگيری از عبور جريان زياد در موقع راه اندازی موتور ميتوان مقاومت هايی به طور سری سر راه سيم پيچی هایموتور قرار دارد . و به تدريج كه موتور دور می گيرد دسته مقاومتهای راه انداز را به طرف چپ حركت داده در اين صورت كم كم مقاومتها از سر راه مدار خارج ميشود.
اين طريق راه اندازی به دليل تلفات انرژی در مقاومتها زياد و نيروی كشش در لحظه شروع به كار كم ، استعمال كمی دارد.
5-راه اندازی موتورهای آسنكرون با روتور سيم پيچی با قرار دادن مقاومت سر راه روتور : تمام مقاومتهای راه انداز را سر راه سيم پيچی روتور قرار داد . بدين وسيله مقاومت مدار سيم پيچی روتور را به حداكثر مقدار خود ميرسانند و سپس استاتور را به شبكه برق وصل می كنند . مقاومت روئستای روتور به تدريج از مدار خارج ميشود .

پيدا كردن سرسيم های موتور آسنكرون UVW-XYZ

آيا می دانيد اگر موتور آسنكرونی سه فازی داشته باشيم و 6 سر سيم ، كه سر سيم های آن مشخص نيست ، چه بايد كرد ؟؟
اگر اين سر سيم ها اشتباه وصل شود در عملكرد موتور چه تغييری حاصل می شود ؟

تعيين آرايش كلافها در شيار :

موتورهای سه فاز از سه سيم پيچ تشكيل شده كه هر كدام از اين سيم پيچها 3/1 شيارهای استاتور را اشغال می كند. اين سيم پيچها به فاز اول (R) ، فاز دوم (S) ، فاز سوم (T) شناسايی می شوند.
§ سيم پيچی كه از فاز Rتغذيه می كند شروع سيم پيچی را (U ) و انتهای آنرا با ( X )
§ سيم پيچی كه از فاز S تغذيه می كند شروع سيم پيچی را (V ) و انتهای آنرا با ( Y )
§ سيم پيچی كه از فاز T تغذيه می كند شروع سيم پيچی را (W ) و انتهای آنرا با ( Z )

برای يافتن سر سيم ها‌ :

ابتدا بايد دو سر هر كلاف را پيدا كنيد از مولتی متر يا هر روش ديگری كه می شناسيد .( يك سر مولتی متر را به يك سر سيم گرفته ، سر ديگر مولتی متر را با 5 سر سيم باقی مانده امتحان می كنيد . هر كدام كه راه داد ، آن يك كلاف سيم پيچ است . )

اشتباه در سرسيم ها :

همانطور كه می دانيم موتور سه فاز از سه سيم پيچ تشكيل شده است.كه هر كدام از سيم پيچها 3/1 شيارهای استاتور را اشغال كرده وباعث تشكيل قطب در موتور می شود و قطب ها حركت دورانی به روتورمی دهد . حال اگر سر سيمی تغيير كند در موتور ايجاد قطب نمی شود و موتور حركت نمی كند و می تواند باعث سوختن موتور شود .
قبل از انجام كار اگر بار روی موتور قرار دارد بار را از روی موتور برداريد. ( تسمه يا ….)

تنظيم دور موتورهای آسنكرون

با دانستن رابطهNr=[60f/p](1-S) دور موتور آسنكرون را ميتوان به طريقه های زير تنظيم نمود :
1. تغيير فركانس ولتاژ شبكه
2. تغيير قطبها
3. داخل كردن مقاومت در مدار روتور
4. تغيير ولتاژ موتور
1-تغيير دور بوسيله تغيير فركانس : با تغيير فركانس سرعت سنكرون تغيير ميكند و دور موتور تغيير ميكند . ميتوان برای تغيير فركانس از يك مولد يا مبدل فركانس استفاده نمود . و يك يا چند موتور القايی كه در شرايط مشابهی كار می كنند بوسيله آنها تغذيه شوند . مانند موتور ماشينهای كارخانه فولاد سازی و موتورهای محرك ماشين نساجی
2-تغيير دور بوسيله تغيير عده جفت قطبها : اين تغيير را در موتورهای آسنكرونی است كه بتوان با سيم پيچهای‌ آن تغيير قطب داد كه اين حالت در موتورهای دو سرعته ( دالاندر ) ديده می شود كه ميتوان با كليد ( دالاندر ) دور موتور را تغيير داد .
3-تغيير دور با داخل كردن مقاومت در مدار روتور : در موتورهای آسنكرون با روتور سيم پيچر شده با تغيير مقاوت مدار روتور ميتوان سرعت گردش روتور را تنظيم كرد ولی چون راندمان موتور بر اثر تغيير دور تغيير ميكند در نتيجه كاربرد اين روش خيلی كم است
4-تغيير دور با تغيير ولتاژ : از اين روش در موتورهای كوچك مانند پنكه و … استفاده ميشود .

موتور آسنكرون با روتور سيم پيچی شده (روتور رينگی)

روتور سيم پيچی شده : به جای ميله ، استاتور را می توان سيم پيچی سه فاز كرد و اينسيم پيچها را به صورت ستاره وصل می كنيم . درروی محور اين موتور سه حلقه كه نسبت به هم و نسبت به محور عايق هستند (رينگ) قرار دارد . سه سر سيم پيچی روتور به اين سه حلقه متصل می شود و به وسيله جاروبكهائی كه روی حلقه ها تكيه دارند به يك مقاومت سه فاز ستاره متصل ميشود.

مزايای موتور آسنكرون با روتور سيم پيچی شده :

§ در موقع شروع به كار گشتاور قوی دارد .
§ بر خلاف موتور آسنكرون با روتور قفسه ای كه جريان شروع به كار آنها كم است جريان شروع به كار كمی‌ دارد .
§ سرعت آن در مقابل بارهای مختلف تقريباً ثابت است .
§ تعداد دور آن تا حدی قابل تنظيم است .( با كم و زياد كردن رئوستا راه انداز )
§ ميتوان تا حدی بار آن را زياد كرد .

معايب موتورهای آسنكرون با روتور سيم پيچی شده :

§ در مقابل تغيير ولتاژ حساسيت دارد .
§ ضريب قدرت آن در موقعيكه بار به حد نرمال نيست كم می باشد .
§ ضريب قدرت آنها نسبت به ضريب قدرت موتور آسنكرون با روتور قفسه ای كمتر است.

موارد استفاده و كاربرد موتورهای آسنكرونبا روتور سيم پيچی شده :

از موتور آسنكرون با روتور سيم پيچی شده :برای قدرت های خيلی زياد مخصوصاً اگر با فشار قوی باشد استفاده می شود و يا اينكه در موقع شروع به كار ، موتور احتياج به گشتاور زياد داشته باشد مانند به راه انداختن ترن يا جرثقيلها و غيره

راه اندازي موتورهاي سنكرون در حالت بارداري

ساختمان : استاتور موتورهاي سنكرون از نظر ساختمان دقيقاً مشابه استاتور موتورهاي القايي است سيم پيچهاي سه فاز آن در داخل شيارهاي هسته آهني استاتور تعبيه شده كه وظيفه آنها ايجاد ميدان دوار در هسته استاتور است.
روتور اين موتور به صورت يكپارچه يا از ورقهاي مغناطيسي ساخته مي شود و بر روي آن يك سيم پيچي جريان مستقيم به نام سيم پيچ تحريك نصب مي شود.
جريان تغذيه سيم پيچي تحريك روتور، از طريق دو حلقه كه بر روي محور روتور نصب شده به وسيله جاروبكها تأمين مي شود و روتور اين موتورها عملا بصورت يك مغناطيس الكتريكي (چرخ قطب) رفتار مي كند كه تعداد قطبهاي روتور به اندازه قطبهاي سيم پيچي استاتور خواهد بود.
طرز كار: هنگام وصل استاتور به شبكه سه فاز ، يك ميدان دوار كه سرعت آن متناسب با فركانس شبكه و تعداد قطبهاي استاتور است در آن بوجود مي آيد و سطح روتور را جاروب مي كند.قطبهاي روتور از طريق قطبهاي غير همنام استاتور جذب و لحظه اي بعد مجدداً اين قطبها به وسيله قطبهاي همنام استاتور دفع خواهند شد. پس ميانگين گشتاور صفر و روتور حركت نمي كند قطبهاي روتور به دليل سنگيني و اينرسي موجود در آن نمي توانند به سرعت همراه ميدان دوار استاتور بچرخند. پس بايد با يك وسيله كمكي (راه انداز) ابتدا سرعت روتور را به نزديكي سرعت ميدان دوار استاتور رساند تا روتور بتواند همراه ميدان دوار چرخش كند.
سؤال: گشتاور راه اندازي اين موتورها چقدر است؟

روشهاي راه اندازي موتورهاي سنكرون:

 

براي راه اندازي موتورهاي سنكرون سه روش اساسي مي توان به كار برد.
1-كاهش سرعت ميدان مغناطيسي استاتور: تا حدي كه روتور بتواند طي نيم سيكل چرخش ميدان مغناطيسي شتاب بگيرد و با آن قفل شود . اين كار را مي توان با كاهش فركانس منبع تغذيه انجام داد.
2-استفاده از يك گرداننده اوليه: كه سرعت موتور را تا حد سرعت سنكرون بالا ميبرد و با طي مراحل موازي كردن ماشين مثل ژنراتور روي خط آورده شود. پس از اين مراحل خاموش كردن با جدا كردن گرداننده اوليه ماشين سنكرون را تبديل به موتور خواهد كرد.
3- استفاده از سيم پيچ هاي ميرا كننده كه در انتهاي قطبين روتور نصب مي شود.
در موتورهاي سنكرون سرعت حركت روتور در هر حال برابر با سرعت ميدان دوار استاتور خواهد بود و افزايش بار فقط عقب ماندگي روتور نسبت به ميدان را موجب مي شود.
اختلاف فاز اين دو ميدان Bs وBR همان زاويه گشتاور است كه از0 تا90 تغيير مي كند. البته اگر افزايش بار بيش حد باشد. موتور از حالت سنكرونيزم خارج خواهد شد كه اصطلاحا آن را ناپايدار مي ناميم ضمنا هنگام كار با سرعت سنكرون با تغييرات جريان تحريك امتداد جريان آرميچر و ضريب قدرت ماشين از حالت پس فازي به اهمي و پيش فازي قابل كنترل خواهد بود كه از اين خاصيت جهت اصلاح ضريب قدرت شبكه استفاده مي شود كه به موتورهاي سنكرون پر تحرك (كاردر حالت پيش فازي) خازنهاي سنكرون نيز گفته مي شود . (موتورهاي سنكرون در حالت كار پيش فازي كم تحريك هستند.) مدار معادل تكفاز موتور سنكرون بصورت زير مي باشد.

تكنولوژي ساخت موتور هاي پله

آیا تا کنون به واژه motion (حرکت) فکر کرده اید. امروزه اهمیت جابه جایی در کلیه زمینه ها احساس می شود. حرکت و سرعت تعریف جدیدی را از جهان امروز ارائه می دهد.
کنترل حرکتی در حوزه الکترونیک به معنی کنترل صحیح حرکت یک شی بر اساس فاکتور هایی مانند سرعت – مسافت- بارگیری و یا ترکیبی از کلیه موارد می باشد. امروزه سیستم های کنترل حرکتی بسیار زیادی مو جود است که می توان از stteper motors- linear stepper motors- Dc brush-… نام برد. در اینجا به توضیحات مختصری از تکنولوژی step motor ها اکتفا می کنیم.
در تئوری از stepper motor به عنوان یک شگفتی در ساده سازی یاد می شود. اساسا هر stepper یک مو تور با یک میدان مغناطیسی می باشد که خود به صورت الکتریکی رو شن شده و باعث چرخش دایرهای آرماتور آهنربا می شود.
قسمت کنترل کننده حرکت از یک کابل میکرو پروسسور جهت تولید پالس های پله ای و ایجاد سیگنال های مسیر حرکت تشکیل شده است. و هر indexer بایستی قادر به انجام دستورات اجرایی باشد.
motion driver و یا همان آمپلی فایر دستورات سیگنال های رسیده از منبع را به قدرت مورد نیاز برای چرخش پره های مو تور می شود. امروزه تعداد زیادی driver با قدرت های مختلف جریان و ولتاژ در ساختار تکنولوژی یافت می شود.
هر stepper motor یک وسیله مغناطیسی است که هر پالس دیجیتال را به یک چرخش مکانیکی مانند چرخش پره تبدیل می کند. از مزیت های آن به هزینه پایین- امنیت بالا – ساده بودن و قابل استفاده بودن در هر محیط می توان اشاره کرد.

انواع stepper motor ها :

variable reluctance
permanent magnet
hybrid
چگونگی طراحی هر driver تعیین کننده نوع خروجی هر stepper motor است که دارای سه نوع full- half- microstep می باشد.
Full step:
استاندارد طراحی دارای 50 چرخندا دندانه دار و تو لید کننده 20 پالس پله ای برای چرخش مکانیکی هر عنصر است.
Half step:
به معنی آن است که مو تور می تواند دارای 400 حرکت پله ای در هر دوره باشد. در این سیستم یک چرخنده خود دارای انرژی ست که باعث چرخش تناوبی دو چرخنده دیگر می شود. half stepping یک راه حل عملی تر در صنعت است.
microstep:
یک تکنولوژی نسبتا جدید است که جریان چرخش هر چرخنده را کنترل می کند. این کنترل در سطحی انجام می شود که تقسیم کننده ای فرئی دور تری در بین قطبها قرار گیرد.

موتور استارترها

همانطوری که می دانید ، راه اندازی موتورهای القایی در صنعت از اهمیت ویژه ای برخوردار است. به خصوص این که امروزه استفاده از راه اندازهای الکترونیکی مانند راه اندازهای نرم – کنترلر های سرعت بسیار مرسوم شده است و لازم است علاقه مندان و کارشناسان این رشته روشهای کنترل و راه اندازی موتورها را به شیوه های کلاسیک به دیده فراموشی بسپارند و به فراگیری روشهای بروز بپردازند.
یکی از روشهای راه اندازی موتورهای القایی راه اندازهای نرم می باشد که از طریق آنها موتور ها از طریق کنترل ولتاژ-فرکانس در یک زمان مشخص بتدریج از سرعت صفر به سرعت نامی می رسند که این روش امروزه کاملا جا افتاده است.
راه اندازهای نرم تنها در هنگام راه اندازی بکار می روند و معمولا پس از راه اندازی توسط یک کنتاکتور بای پس از مدار خارج می گردند. این راه اندازها می توانند به سیستم از کار اندازی نرم نیز مجهز باشند که کاربرد های ویژه ای دارد. ضمن این که عموما این نوع راه اندازها به ترمز الکترونیکی از طریق تزریق جریان مستقیم نیز مجهز می باشند.
سازندگان این نوع راه اندازها معمولا حفاظت های مورد نیاز برای موتور را نیز در راه اندازها تعبیه می کنند که از این طریق حجم راه انداز محدود می گردد. ضمن این که با استفاده از این گونه راه اندازها نیاز به در نظر گرفتن کنتاکتور اصلی نیست . حفاظت هایی که معمولا در راه اندازهای نرم پیش بینی می گردد بشرح زیر است :
– حفاظت در مقابل اضافه بار
– حفاظت در مقابل توالی معکوس فازها و دو فاز شدن
– حفاظت در مقابل افزایش حرارت سیم پیچ های موتور که از طریق سنسورهای حرارتی انجام می گردد.
– حفاظت در مقابل کاهش ولتاژ
و موارد ديگر که بسته به سازنده راه انداز می تواند تغییر کند.
نکته مهم اینجاست که هنگام بسته شدن کنتاکتور بای پس حفاظت های تعبیه شده در راه انداز همچنان فعال می باشد چون مسیر بای پس تنها تایرستورها را بای پس می کند.
جهت بستن کنتاکتور بای پس بعد از راه اندازی موتور عموما از یک کنتاکت راه انداز استفاده می گردد که بعد از رمپ راه اندازی به صورت خودکار فعال می گردد. لازم به ذکر است که برخی از راه اندازهای نرم دارای سیستم بای پس داخلی هستند که دیگر نیاز به در نظر گرفتن کنتاکتور بای پس نیست.
با توجه به این که تایرستورهای بکار رفته در راه اندازهای نرم حرارت تولید می کنند اینطور استنباط می گردد که در تابلو برق های دارای راه اندازهای نرم لازم است از فن استفاده گردد. ولی با توجه به کار راه انداز تنها در مرحله استارت ، حرارت تولید شده تنها به مرحله راه اندازی محدود می گردد و بنابر این در راه اندازهای دارای سیستم بای پس تنها تعبیه شکاف های عبور هوا متناسب با درجه حفاظتی تابلو توصیه می گردد. ضمن این که این گونه راه اندازها عموما مجهز به هیت سینک و فن هستند.
اکثر راه اندازهای نرم مجهز به پورت های اطلاعاتی مانند مودباس- پروفی باس و …. جهت تبادل اطلاعات می باشند که از این طریق می توان از کلیه اطلاعات داخل راه انداز مطلع گردید به این طریق کنترل این راه انداز ها توسط سیستم هایی مانند DCS بسیار ساده می باشد.

موتور های خطی

يك موتور خطي در واقع يك موتور الكتريكي است كه استاتورش غير استوانه شده است تا به جاي اينكه يك گشتاور چرخشي توليد كند، يك نيروي خطي در راستاي طول استاتور ايجاد كند.
طرح‌هاي بسياري براي موتورهاي خطي ارائه شده است كه مي‌توان آنها را به دو دسته تقسيم كرد: موتورهاي خطي شتاب بالا و شتاب پايين. موتورهاي شتاب پايين براي قطارهاي مگليو و ديگر كاربردهاي حمل و نقلي روي زمين مناسب هستند. موتورهاي شتاب بالا معمولاً خيلي كوتاه هستند و براي شتاب دادن به جسمي تا سرعت بسيار زياد و سپس رها كردن آن به كار مي‌روند. اين موتورها معمولاً براي مطالعات برخورد سرعت بالا به عنوان تسليحات نظامي يا به عنوان راه‌اندازنده جرمي براي پيشرانه فضاپيما به كار مي‌رود. موتور خطي‌اي كه براي شتاب دادن به يون ها يا ذره‌هاي زير اتمي به كار مي‌رود، يك شتاب دهنده ذره ناميده مي‌شود. با نزديك شدن ذره‌ها به سرعت نور، طراحي موتورها معمولاً متفاوت مي‌شود و اين ذره‌ها نيز عموماً داري بار الكتريكي هستند.

شتاب پايين

ايده موتور خطي اولين بار توسط پرفسور اريك ليتويت از كالج امپريال در لندن مطرح شد. در طرح وي و در اكثر طرح‌هاي شتاب پايين، نيرو توسط يك ميدان مغناطيسي خطي سيار كه بر روي هادي‌ها موجود در ميدان عمل مي‌كند، ايجاد خواهد شد. در هر هادي‌ چه يك حلقه، چه يك سيم‌پيچ يا يك تكه از فلز تخت كه در اين ميدان قرار گيرد جريان‌هاي گردابي القا شده وجود خواهد داشت و بنابراين يك ميدان مغناطيسي مخالف را ايجاد خواهد كرد. دو ميدان مغناطيسي همديگر را دفع خواهند كرد و بنابراين جسم هادي را از استاتور دور خواهند كرد و آن را در طول جهت ميدان مغناطيسي سيار حمل خواهند كرد.
به علت اين ويژگي‌ها، موتور خطي اغلب در پيشرانه قطار مگليو به كار مي‌رود هر چند كه مي‌توان صرف نظر از پرواز مغناطيسي از آنها استفاده كرد، مانند استفاده در فن‌آوري انتقال پيشرفته و سريع نور كه در سيستم ترن آسماني ونكوور ، Scarborough RT تورنتو، ترن هوايي فرودگاه JGK نيويورك و Putra RTL كووالالامپور به كار مي‌رود. از اين فن‌آوري با تغييراتي در برخي از قطار‌هاي بازي نيز استفاده مي‌شود.
موتورهاي خطي عمودي نيز براي مكانيسم‌هاي بالابر در معدن هاي عميق پيشنهاد شده است.

شتاب بالا

موتورهاي خطي شتاب بالا براي كاربرهاي متعددي پيشنهاد شده‌اند. به علت اينكه مهمات ضد زرهي كنوني بايستي گلوله‌هاي كوچكي با انرژي جنبشي بسيار بالا باشند يعني دقيقاً آنچه كه اين موتورها فراهم مي‌كنند، از آنها به عنوان تسليحات استفاده شده‌ است. اين موتورها همچنين براي استفاده در پيشرانه فضا پيماها به كار گرفته مي‌شود. در چنين شرايطي به اين موتورها راه‌اندازهاي جرمي گفته مي‌شود. ساده‌ترين روش استفاده از راه‌انداز جرمي براي پيشرانه فضا پيما، ساخت يك راه‌انداز جرمي بزرگ است كه بتواند محموله را تا سرعت گريز شتاب دهد.
طراحي موتورهاي شتاب بالا به دلايل متعددي مشكل است. آنها مقادير بزرگ انرژي را در مدت زمان كوتاه نياز دارند. كه براي هر پرتاب در فضا نياز به 300GJ در مدت زمان كمتر از يك ثانيه دارد. ژنراتور ها  ي الكتريكي معمولي براي چنين نوع از باري طراحي نشده‌اند اما روش‌هاي ذخيره انرژي الكتريكي كوتاه مدت را مي‌توان مورد استفاده قرار داد. خازن ‌ها پر حجم و گران هستند اما مي‌توانند به سرعت مقادير بزرگ انرژي را فراهم كنند. ژنراتور ها  ي هم قطب را مي‌توان براي تبديل سريع انرژي جنبشي يك چرخ طيار به انرژي الكتريكي به كار برد. موتورهاي خطي شتاب بالا نيازمند ميدان‌هاي مغناطيسي بسيار قوي‌اي نيز هستند، در واقع ميدان‌هاي مغناطيسي اغلب آنقدر قوي اند كه اجازه استفاده از ابر رساناها را نمي‌دهند. اما با طراحي دقيق مي‌توان اين مشكل را حل كرد.
دو طرح متفاوت پايه‌اي از موتور‌هاي خطي شتاب بالا ابداع شده است: تفنگ‌هاي ريلي و تفنگ هاي كويلي.

موتورهاي فرمان يار DC بدون جاروبك

یک سرو موتور، یا یک موتورDC یا AC یا یک موتور DC بدون جاروبک می‌باشد که ترکیب شده با یک دستگاه تعیین محل موقعیت (کدبردار دیجیتالی). سروو موتورها در ربات‌ها کاربرد خیلی زیادی دارند. این موتورها کوچک ولی نسبت به اندازه‌شان بسیار پرقدرت می‌باشند. موتور DC بدون جاروبک یک موتورDC معمولی نیست، اما یک ماشین سنکرون آهنربای دائم است. این نام بردن واقعی است زیرا مشخصات عملیاتی آن همانند همان موتورهای DC شنت با جریان میدان ثابت است.

موتورهاي پله‌اي

نوع خاصی از موتور سنکرون که برای چرخیدن محور به اندازه یک زاویه خاص برای همه پالس‌های الکتریکی که از واحد کنترل کننده خودش دریافت می‌کند، در نظر گرفته شده است. نوعی از پله‌ها 5/7 یا 15 درجه در هر پالس محور را می‌چرخانند. این است یک موتور که می‌تواند با دو دستورالعمل بچرخد، حرکت کند در زاویه‌‌هایی با فواصل کوچک و دقیق،گشتاور موجود در سرعت صفر را تحمل می‌کند و با مدار دیجیتالی کنترل می‌شود. حرکت می‌کند در زاویه‌های دقیق با فواصل کوچک معلوم به عنوان گام، در پاسخ به استفاده از پالس‌های دیجیتالی به مدار راه‌انداز الکتریکی. به طور کلی، این قبیل موتورها با گام‌هایی در هر دور ساخته می‌شوند. گام‌های موتورها دو قطبی هستند که نیاز به دو منبع قدرت دارند با تک قطبی هستند که تنها نیاز به یک منبع قدرت دارند.

موتورهاي يونيورسال

موتورهای یونیورسال موتورهای چرخشی هستند شبیه به موتورهای DC اما طراحی شده‌اند برای ولتاژ DC با AC تکفاز. سیم‌پیچی‌های استاتور و رتور این موتورها به صورت سری بین کموتاتور رتور متصل شده‌اند. بنابراین موتورهای یونیورسال همچنین معروف هستند به موتورهای AC سری یا یک موتور با کموتاتور AC. موتورهای یونیورسال می‌توانند کنترل شوند با راه‌انداز زاویه فاز و یا راه‌اندازهای برشگر.
موتورهای یونیورسال یک مشخصه گشتاور- سرعت با افت زیاد از یک موتور DC را دارد.

نمونه کاربرد در جاروبرقی، دریل و وسایل آشپزخانه
موتور القايي تك فاز

چندین نوع موتور القایی تک فازکه امروزه مورد استفاده قرار می‌گیرد، وجود دارد. به طور اساسی آنها یکسان هستند مگر برای وسایل راه‌اندازی. آنها طبقه‌بندی می‌شوند به : موتور‌های القایی با انشقاق فاز، موتور با استارت خازنی.

معيارهاي انتخاب موتور

1-دردست بودن منبع تغذیه
2- شرط یا عوامل راه اندازی
3-مشخصه‌های راه اندازی (گشتاور – سرعت) مناسب
4-سرعت عملکرد کار مطلوب
5- قابلیت کارکردن به جلو و عقب
6- مشخصه‌هی شتاب (وابسته به بار)
7- بازده مناسب در بار اسمی
8-توانایی تحمل اضافه بار
9-اطمینان الکتریکی و حرارتی
10-قابلیت نگهداری و عمر مفید
11-ظاهر مکانیکی مناسب (اندازه، وزن،‌ میزان صدا، محیط اطراف)
12- پیچیدگی کنترل و هزینه

چند نوع موتور القایی
موتور القايي AC فاز شكسته

1. موتور القايي با استارت خازني
2. موتورهاي AC القايي با خازن دائمي اسپليت
3. موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

موتور القايي AC فاز شكسته

موتور فاز شكسته همچنين به عنوان Induction start/Induction run (استارت القايي/كاركرد القايي)هم شناخته مي شود كه دو پيچه دارد.پيچه استارت از سيم نازكتر و تعداد دور كمتر نسبت به پيچه اصلي براي بوجود آوردن مقاومت بيشتر ساخته شده است.همچنين ميدان پيچه استارت در زاويه اي غير از آنچه كه پيچه اصلي دارد قرار مي گيرد كه سبب آغاز چرخش موتور مي شود.پيچه اصلي كه از سيم ضخيم تري ساخته شده است موتور را هميشه درحالت چرخش باقي نگه مي دارد.
تورك آغازين كم است مثلا 100 تا 175 درصد تورك ارزيابي شده.موتور براي استارت جرياني زياد طلب مي كند.تقريبا 700 تا 1000 درصد جريان ارزيابي شده.تورك بيشينه توليد شده نيز در محدوده 250 تا 350 درصد از تورك براوردشده مي باشد.
كاربريهاي خوب براي موتورهاي فاز شكسته شامل سمباده (آسياب) هاي كوچك , دمنده ها و فنهاي كوچك و ديگر دستگاههايي با نياز به تورك آغازين كم با و نياز به قدرت 1/20 تا 1/3 اسب بخار مي باشد.از استفاده از اين موتورها در كاربريهايي كه به دوره هاي خاموش و روشن و گشتاور زياد نيازدارند خود داري نماييد.

موتور القايي با استارت خازني

اين نوع , موتور اصلاح شده فاز شكسته با خازني سري با آن براي بهبود استارت است.همانند موتور معمولي فاز شكسته اين نوع موتور يك سوئيچ گريز از مركز داشته كه هنگامي كه موتور به 75 درصد سرعت ارزيابي شده مي رسد , پيچه استارت را از مدار خارج مي نمايد.از آنجا كه خازن با مدار استارت موازي است , گشتاور استارت بيشتري توليد مي كند , معمولا در حدود 200 تا 400 درصد گشتاور ارزيابي شده.و جريان استارت معمولا بين 450 تا 575 درصد جريان ارزيابي شده است.كه بسيار كمتر از موتور فاز شكسته و بعلت سيم ضخيمتر در مدار استارت است.
نوع اصلاح شده اي از موتو با استارت خازني ، موتور با استارت مقاومتي است.در اين نوع موتور خازن استارت با يك مقاومت جايگزين شده است.موتور استارت مقاومتي در كاربريهايي مورد استفاده قرار مي گيرد كه ميزان گشتاور استارتينگي كمتر از مقداري كه موتور استارت خازني توليد مي كند لازم است.صرف نظر از هزينه اين موتور امتيازات عمده اي نسبت به موتور استارت خازني ندارد.
اين موتورها در انواع مختلف كاربريهاي پولي و تسمه اي مانند تسمه نقاله هاي كوچك , پمپها و دمنده هاي بزرگ به خوبي بسياري از خود گردانها و كاربريهاي چرخ دنده اي استفاده مي شوند.

موتورهاي AC القايي با خازن دائمي اسپليت

اين موتور (PSC) نوعي خازن دائما متصل به صورت سري به پيچه استارت دارد.اين كار سبب آن ميشود كه پيچه استارت تازماني كه موتور به سرعت چرخش خود برسد بصورت پيچه اي كمكي عمل كند.از آنجا كه خازن عملكرد اصلي , بايد براي استفاده مداوم طراحي شده باشد , نميتواند توان استارتي معادل يك موتور استارت خازني ايجاد نمايد.گشتاور استارت يك موتور (PSC) معمولا كم و در حدود 30 تا 150 درصد گشتاور ارزيابي شده است.موتورهاي (PSC) جريان استارتي پايين , معمولا در كمتر از 200 درصد جريان برآورد شده دارند كه آنها را براي كاربريهايي با سرعتهاي داراي چرخه هاي خاموش روشن بالا بسيار مناسب مي سازد.
موتورهاي PSC امتيازات فراواني دارند.طراحي موتور براحتي براي استفاده با كنترل كننده هاي سرعت ميتواند اصلاح شود.همچنين مي توانند براي بازدهي بهينه و ضريب توان بالا در فشار برآورد شده طراحي شوند.آنها به عنوان قابل اطمينان ترين موتور تك فاز مطرح ميشوند.مخصوصا به اين خاطر كه به سوئيچ گريز از مركز نيازي ندارند.
موتورهاي PSC بسته به طراحيشان كاربري بسيار متنوعي دارند كه شامل فنها , دمنده ها با نياز به گشتاور استارت كم و چرخه هاي كاري غير دائمي مانند تنظيم دستگاهها (طرز كارها) , عملگر درگاهها و بازكننده هاي درب گاراژها ميشود.

موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

اين موتور , همانند موتور با استارت خازن , خازني از نوع استارتي در حالت سري با پيچه كمكي براي گشتاور زياد استارت دارد.همچنين مانند يك موتور PSC خازني از نوع كاركرد كه دركنار خازن استارت در حالت سري با پيچه كمكي است كه بعد از شروع به كار موتور از مدار خارج مي شود.اين حالت سبب بوجود آمدن گشتاوري در حد اضافي مي شود.
اين نوع موتور مي تواند … و بازده بيشتر طراحي شود.اين موتور بخاطر خازنهاي كاركرد و استارت و سوئيچ گريز از مركز آن پرهزينه است.
اين موتور مي تواند در بسياري از كاربريهايي كه از هرموتور تك فاز ديگري انتظار ميرود استفاده شود.اين كاربريها شامل ماشينهاي مرتبط با چوب , كمپرسورهاي هوا , پمپ های   آب فشار قوي , پمپ های   تخليه و ديگر كاربردهاي نيازمند گشتاورهاي بالا در حد 1 تا 10 اسب بخار مي شوند.

نگهداری الکترو موتور و تعمیرات الکترو موتور

موتور ها در سیستمهای كنونی به عنوان بازوی اصلی و قلب تپنده هر كارخانه به شمار می روند .و خرابی برنامه ریزی نشده سیم پیچی الكتروموتورها یكی از علل تحمیل هزینه های بالا بر كارخانجات میباشد.در همین راستا برنامه های تعمیر و نگهداری و سیم پیچی موتور ها پیشگیرانه قابل اعتماد به خوبی میتوانند باعث طولانی شدن عمر عملکرد سیم پیچی موتور و كاهش خسارات گردند. با این حال ، برنامه نگهداری پیشگیرانه برای موتور مفید نخواهد بود اگر شما تجهیزات تست مناسب و ابزار و آموزش را نداشته باشید.

روش های متنوع نگهداری ممکن است برای هر نوع از موتور ، کنترلر ، و یا وسایل مرتبط با آن در تاسیسات وجود داشته باشد. . شما باید بهترین روش ها برای تسهیلات را انتخاب کنید و سپس تعیین کنید که چگونه بهترین وجه اعمال آن روشها مقدور میباشد.

سیم پیچی، نصب و تعمیر انواع الکترو موتور های صنعتی تک فاز و سه فاز، موتور آسانسور، مگنت ترمز، بالابر، ترانس جوش، چیلر، پمپ های زمینی و آب رسانی ساختمان ها
اما لازمه برنامه ریزی صحیح در خصوص تعمیرات پیشگیرانه شناخت عوامل موثر بر كاركرد یك تجهیز سیم پیچی الكتروموتور میباشد.
هدف از تعمیرات ونگهداری موتور یعنی حفظ تجهیزات از خرابی زودهنگام ، اطمینان از عملکرد مطلوب و به حداقل رساندن خرابی های غیر قابل پیش بینی ( خارج از برنامه ) میباشد
. با تعمیرات و نگهداری خوب ، انرژی و بهره وری ماشین آلات بیشتر می شود ، در ضمن با كاهش اصطكاك دمای آن ( موتور) پایین می آید.
درزیر در مورد نگهداری موتور مواردی عنوان شده است:

علل خرابی موتور

آلودگی 26%

اضافه بار 25%

رطوبت 17%

بلبرینگ 12%

تك فاز 10%
كاركرد طولانی استهلاك 5%

متفرقه 5%.

برنامه های موثر نگهداری برقابلیت و اطمینان و کارایی و بهره وری تاثیر می گذارد.

تمیز کاری

آلودگی و خاك گرفتگی از طریق جذب به عایقهای موتور نفوذ پیدا میكند و این باعث می شود كه روغن روانكاری آلوده شده و موجب آسیب دیدگی یاتاقانها گردد. تجمع آلودگی در فن و دهانه ورودی سیم پیچ موتور باعث افزایش دمای موتور می گردد كه این امر موجب كاهش كارایی و طول عمر موتور می شود .

روانکاری

به طور عمده موتورها باید به صورت دوره ای روانكاری گردند .عدم روانكاری به موقع باعث افزایش اصطكاك و اسیب دیدگی می گردد . شارژ اضافه گریس می تواند بر روی سیم پیچها ریخته و موجب خرابی گردد. تمیز كردن اتصالات قبل از گریسكاری باعث جلوگیری از آلودگی می شود .

ارتعاش

افزایش قابل توجه و یا تغییر ارتعاش سیم پیچی موتور به منزله وجود مشكل در یاتاقان ،عدم تعادل بار ، خم شدن ، كوپلینك نامناسب و یا نوسان برق می باشد .كشش تسمه و عدم توازن می تواند قدرت مصرفی برق را بالا برده و باعث كاهش طول عمر موتور گردد .

تست ولتاژ

بكار گیری سیم پیچی موتورها در خارج از رنج طراحی شده یاكمتر از 10٪ ولتاژ نامی باعث كاهش كارایی وطول عمر موتور می گردد. نوسان ولتاژ باعث آمپر كشیدن بیش از حد موتور و در نتیجه افزایش درجه حرارت و نیز افت توان موتور را به طور فزاینده افزایش می یابد . زمانی كه موتور در حال كار كردن می باشد اندازه گیری ولتاژ مسیر می گردد .

تست عایق

تست مقاومت سیم پیچی موتور های كاركرده بر اساس یك روش ثابت میتواند پیش بینی مهمی در تست كاركرد موتورهاداشته باشد ثبت طولانی مدت تست عایقها می تواند معیار درجه بندی عایقها بشمار آید.بدلیل برقراری كیفیت عایقها میبایست تست آنها یك یا دو بار در سال انجام پذیرد .

نتیجه گیری :

برنامه های موثر نگهداری برقابلیت و اطمینان و کارایی و بهره وری تاثیر می گذارد. اما این مهم در صورتی موثر خواهد بود كه مازاد بر شناسایی دقیق علل اصلی خرابی(آلودگی-اضافه بار و رطوبت) –ابزار لازم جهت اجرایی شدن برنامه نیز مهیا باشد.

سیمپیچی الکتروموتور یا سیم پیچی موتور الکتریکی

سیم پیچی

بهتر است از اینجا شروع کنیم که در زندگی پیشرفته ی ماشینی امروز انسانی پیدا نخواهد شد که با سیم پیچی الکتروموتور یا سیم پیچی موتور الکتریکی برخورد نداشته باشد. گرچه ممکن است که آن را درک نکند. سیم پیچی الکتروموتورها در تمام مراحل زندگی با ما هستند و برای ما کارهای مختلف را انجام می دهند. به بیان دیگر هر کجا حرکتی هست الکتروموتور یا موتور الکتریکی هم وجود دارد.

شاید بگویید که موتورهای بنزینی و دیزلی هم تولید حرکت یا همان انزژی مکانیکی می کنند ولی به جای برق با سوخت کار می کنند اما حقیقت این است که این موتورها نیز برای کار به انرژی الکتریکی نیاز دارند که این انرژی از باتری بدست آمده و برای ادامه ی کار این باطری باید توسط یک ژنراتور شارژ گردد که البته ژنراتور نیز نوعی موتور الکتریکی است که ما آن را دینام (Dynamo) نیز می نامیم.

سیمپیچی الکتروموتور یا سیم پیچی موتور الکتریکی

درکاربردهای روزمره و خانگی دستگاه هایی چون ماشین لباس شویی ، هوود آشپزخانه ، جارو برقی ، یخچال وحتی عروسکی که فرزند شما در دست دارد همه و همه دارای الکتروموتور یا موتورالکتریکی می باشند.

همه موتورهای الکتریکی از یک اصل برای تولید حرکت استفاده می کنند و آن اصل مغناطیس می باشد (قطب های هم نام آهنربا یکدیگر را دفع و قطب های غیر هم نام یکدیگر را می ربایند).

الکتروموتورها از نظر جریان مصرفی به دو دسته ی عمده تقسیم می شوند.

الکتروموتور یا موتور الکتریکی Direct Current) DC) یا جریان مستقیم

الکتروموتور یا موتور الکتریکی Alternative Current) AC) یا جریان متناوب

که البته هر یک از این دسته ها ؛ دارای انواع خاص می باشند.

سیم پیچی موتور الکتریکی

          DC یا جریان مستقیم :

سیم پیچی موتور الکتریکی جریان مستقیم به سه نوع سری (Series) ؛ شانت (Shunt) و مرکب (Compound) تقسیم می شوند. هر یک از انواع نام برده شده دارای خصوصیات خاص خود می باشد که با توجه با کاربرد هر یک از آنها را می توان مورد استفاده قرار داد.

الکتروموتور جریان مستقیم سری دارای گشتاور راه انداز بالا بوده و از این رو در کاربرد هایی که نیاز به گشتاور راه اندازی بالا است مانند: پرس های ضربه ای جرثقیل ها ؛ بالابرها؛ آسانسورها مورد استفاده قرار می گیرد. همچنین از این نوع موتور در لوکوموتیوهای شهری (مترو و تراموا) استفاده می شود که به آن اصطلاحا موتور کششی یا اصطکاکی (Traction Motor) نیز گفته می شود.

سیم پیچی الکتروموتور یا موتور الکتریکی شانت یا موازی دارای گشتاور حرکتی حداکثر در دور نامی می باشد. به همین خاطر در کاربرد هایی چون هواکش های صنعتی و دمنده ها و … مورد استفاده قرار می گیرد. این نوع موتورها نباید در زیر بار سنگین راه اندازی شوند چون جریان آرمیچر آنها بیش از حد بالا رفته و به موتور صدمه وارد می شود.

الکتروموتور یا موتور الکتریکی کمپوند دارای خصوصیات هر دو موارد ۱و۲ می باشند که این نوع الکتروموتور به دو دسته زیر تقسیم می شود :

          الف)     کمپوند اضافی

در مواردی به کار می رود که خصوصیات موتور سری لازم باشد ولی با برداشتن بار، موتور مهار گسسته نشود و دور آن خیلی بالا نرود. مانند دستگاههای تراش که در هر پریود کاری بی بار شده و سپس در بار کامل قرار می گیرد.

          ب)       کمپوند نقصانی

در مواردی به کار می رود که به سرعت تقریبا ثابت نیاز باشد (در بارهای کمتر از بار نامی) لذا معمولا از این نوع موتور در آزمایشگاه ها برای تامین دور ثابت استفاده می شود.

در صنایع مختلف معمولا به جای استفاده از موتور سری از موتور کمپوند اضافی ( که خیلی شبیه سری طراحی شده باشد) استفاده می شود.

          AC یا جریان متناوب :

موتورهای الکتریکی جیان متناوب به انواع سنکرون (Synchronous) و آسنکرون (Asynchronous) تقسیم می شوند. که اینها نیز دارای انواع می باشند :

 

          سنکرون (Synchronous) :

در سیم پیچی موتورهای سنکرون هم استاتور و هم روتور سیم پیچی شده است. زمانی که استاتور را به شبکه وصل می کنیم، میدان گردان بوجود می آید که با سرعت سنکرون می چرخد. روتور نیز سیم پیچی شده است که توسط منبع DC تغذیه می شود.با اتصال جریان DC به روتور ؛ روتور مغناطیس ثابت شده و شروع به گردش با میدان دوار استاتور می کند. برای راه اندازی موتور سنکرون، ابتدا روتور را به سرعت سنکرون می رسانیم و بعد جریان استاتور را وصل می کنیم. در این صورت، قفل مغناطیسی به وجود می آید و موتور پس از قطع محرک اولیه، با سرعت سنکرون می چرخد.

          نکته ۱: ماشین سنکرون، ماشینی است که هم بعنوان ژنراتور سنکرون و هم بعنوان موتور سنکرون می تواند به کار رود.

          نکته ۲: از این موتور برای اصلاح ضریب قدرت در کارخانه ها استفاده می شود.

به خاطر راه اندازی مشکل موتور سنکرون موارد استفاده آن محدود است.

چون موتور سنکرون دور ثابتی دارد در وسایل دقیق که این خصوصیت مورد نیاز است استفاده می شود. مانند ساعتهای الکتریکی و گرام و …

کاربرد مهم موتور سنکرون ، برای اصلاح ضریب توان (Cosφ) می باشد. در این حالت بر روی محور موتور سنکرون باری قرار نمی گیرد یعنی موتور بدون بار کار میکند. در این حالت موتور سنکرون را خازن سنکرون گویند.

مزایای موتور سنکرون:

–     این موتور دارای ضریب قدرت مناسب و قابل تنظیم است.

–     بازده بسیار بالایی دارد.

–     در مقابل نوسان ولتاژ حساسیت ندارد.

–     امکان بکار بردن آن به طور مستقیم با ولتاژ زیاد وجود دارد.

–     با تحریک مناسب هیچگونه قدرت راکتیو مصرف نمیکند و فقط قدرت اکتیو مناسب می گیرد.

–     از این موتور میتوان به عنوان مولد قدرت راکتیو برای بالا بردن ضریب قدرت خط استفاده کرد.

معایب موتور سنکرون:

–     یک وسیله راه اندازی اولیه که موتور کمکی و غیره می باشد احتیاج دارد.

–     علاوه بر جریان متناوب برای سیم پیچ استاتور ، جریان دائم برای قطبهای آن نیز مورد نیاز است در نتیجه قیمت موتور را نسبت به موارد مشابه خود بالا میبرد.

–     سرعت آن ثابت است در نتیجه قابل تنظیم نیست.

–     قابلیت تحمل بار اضافه را ندارد ( در صورتیکه خیلی زیادتر از حد مجاز به آن بار دهند می ایستد و دوباره بایستی آنرا راه اندازی کرد) .

         آسنکرون ( Asynchronous)

سیم پیچی موتورهای آسنکرون خود به دو دسته ی قفسه سنجابی و روتور سیم پیچی شده (Slip Ring) تقسیم می شود:

آسنکرون قفسه سنجابی :

موتور قفسه سنجابی دارای روتوری استوانه ای شکل می باشد که میله هایی از جنس مس و یا آلومینیوم درون شیارهای محیطی آهنی و یا فولادی قرار دارد. که بر دو نوع است که نوع اول از میله های‌ گرد تشکیل شده است و در نوع دوم از میله های مستطیلی و یا به شکل دو دایره که به هم متصل و یا جدا از هم هستند تشکیل میشود . میله های روتور را به این دلیل مورب طراحی می کنند که در تاثیر میدان های استاتور بر روی روتور نوعی هم پوشانی به وجود آید و از لرزش و یا قفل شدن در لحظه ی استارت جلو گیری به عمل آید.

موتور آسنکرون به خاطر سادگی در طراحی و قیمت مناسب در خیلی از صنایع جایگزین موتورهای دیگر شده است. در زیر معایب و مزایای آن را بررسی می کنیم :

مزایای آسنکرون قفسه سنجابی

–     دارای ساختمان ساده ای است.

–     سرعت گردش در بارهای مختلف تقریبا ثابت است

–     تغییر بار باعث از حرکت ایستادن این نوع موتور نمی شود.

–     نسبت به موتورهای روتور سیم پیچی شده (Slip Ring) دارای ضریب قدرت بهتری هستند.

معایب آسنکرون قفسه سنجابی

–     در موقع استارت جریان زیادی (۳ تا ۷ برابر جریان نامی) را از شبکه می گیرند.

–     گشتاور استارت پایینی دارند.

–     زمانی که با بار کم در حال کار است ؛ ضریب قدرتش کاهش می یابد.

–     به تغییرات ولتاژ حساس است و در صورت کم شدن ولتاژ جریان آن به همان نسبت افزایش می یابد.

–     تغییر دور آن با روش کاهش ولتاژ غیر ممکن بوده و نیاز به دستگاهی (AC Drive) برای این کار دارد.

موتورهای قفسه سنجابی به دو نوع تک فاز و سه فاز تقسیم می شوند که نوع تک فاز را برای توان های پایین و تا ۳KW و برای کاربردهای خانگی چون پمپ های آب کوچک و موتور کولر و … استفاده می کنند. موتورهای قفسه ای بزرگتر که سه فاز می باشند برای کاربردهای صنعتی و توان های بالاتر مورد استفاده قرار می گیرند.

آسنکرون روتور سیم پیچی شده (Slip Ring)

همانطور که اشاره شده موتورهای قفسه سنجابی در لحظه ی استارت جریان زیادی را از شبکه می گرفتند و دارای گشتاور شروع کمی بودند. برای رفع این مشکل موتورهای روتور سیم پیچی شده طراحی و ساخته شدند که این عیب را تا حد زیادی مرتفع می کردند.

ایراد موجود در موتورهای قفسه سنجابی به خاطر مقاومت بسیار پایین روتور آن است و میله های روتور توسط حلقه ای در ابتدا و انتهای آن اتصال کوتاه شده اند. این امر باعث می شود که در لحظه ی استارت که روتور مغناطیس نیست شار زیادی را برای مغناطیس شدن به خود جذب کرده و باعث بالا رفتن جریان موتور شود.

در موتورهای روتور سیم پیچی شده (Slip Ring) به جای وجود میله در روتور ؛ روتور را سیم پیچی کردند و انتهای این سیم پیچ ها را به حلقه های لغزنده که خود توسط جاروبک هایی به بیرون موتور هدایت می شوند ؛ وصل کردند. خوبی این کار این است که می توانیم با قرار دادند بانک های مقاومتی در سر راه این سیم پیچ ها ، مقاوت روتور را کم و زیاد کرده و جریان کشی را به دلخواه تغییر دهیم.

به این بانک مقاومتی ، استارتر یا راه انداز می گویند. راه انداز دارای سه پله تا رساندن موتور به دور نامی می باشد. پله ی اول از بانک مقاومتی با رسیدن موتور به ۳۰% دور نامی توسط کنتاکتور مربوطه از مدار خارج شده و موتور به دور گیری خود ادامه می دهد. پله های بعدی ، در دور های ۵۰% و ۷۵% دور نامی می باشد. بعد از این دور استارتر کلا از مدار خارج شده و موتور مستقیما به شبکه متصل شده و به دور نامی می رسد.

از موتورهای روتور سیم پیچی شده در آسیاب ها ؛ سنگ شکن ها ؛ جرثقیل ها و … استفاده می شود.

مزایای موتور روتور سیم پیچی شده

–     دارای گشتاور حداکثر در لحظه ی استارت می باشد.

–     جریان استارت قابل تنظیم است.

–     قابلیت استارت های پیاپی و زیر بار را دارد.

–     گرمای تولید شده بیرون موتور و در استارتر اتفاق می افتد.

–     می توان با انتخاب استارتری که ظرفیت گرمایی بیشتری دارد تعداد شروع های مجدد موتور را افزایش داد.

معایب موتور های روتور سیم پیچی شده

–     به خاطر وجود ذغال در جاربک ها و ساییدگی آنها ، موتور نیاز به تعمیر و نگهداری بیشتری دارد.

–     بقایای ذغال های ساییده شده در موتور جمع شده و باید هنگام تعمیر کلی (Overhaul) و یا فواصل ۲ تا ۵ سال این بقایا پاکسازی شود.

–     قیمت بالاتری نسبت به موتورهای قفسه سنجابی دارند.

همانطور که اشاره شد مزیت اصلی موتورهای روتور سیم پیچی شده گشتاور حداکثری در لحظه ی استارت و جریان کشی کم بود. این مزیت موتور اسلیپ رینگ را تبدیل به وسیله ی گرداننده ی اکثر بارهایی که اینرسی استارت بالایی دارند تبدیل کرده است. گرچه امروزه با ورود دستگاه مبدل فرکانسی (Frequency Converter) ؛ اشکال موتورهای قفسه سنجابی تا حدی زیادی مرتفع شده ؛ با این حال هنوز موتورهای اسلیپ رینگ در صنایع زیادی مورد استفاده قرار می گیرند. برای مقایسه ای این دو الکتروموتور می توانید به لینک زیر در همین سایت مراجه کنید.

تلفات موتورهای الکتريکی

کل اتلاف ها در موتورهای الکتریکی شامل چهار قسمت عمده می باشند که عبارتند از :

  1. تلفات آهنی ( تلفات مغناطیس کنندگی یا تلفات هسته ) که مقدار آن به ولتاژ بستگی دارد بنابراین برای هر موتور خاصی مستقل از میزان بار آن ثابت است.
  2. تلفات مسی که به میزان تلفات گرمائی شناخته می شود و متناسب با مجذور جریان بار است.
  3. تلفات اصطکاکی ( یا تلفات مکانیکی ) و تلفات سیم پیچی که مستقل از میزان بار و مقدار آن ثابت است.
  4. تلفات مربوط به بار هرز

سیم پیچی، نصب و تعمیر انواع الکترو موتور های صنعتی تک فاز و سه فاز، موتور آسانسور، مگنت ترمز، بالابر، ترانس جوش، چیلر، پمپ های زمینی و آب رسانی ساختمان ها

تلفات آهنی شامل تلفات هیسترزیس و تلفات فوکو ( جریان های سرگردان ) می باشد. میزان تلفات هیسترزیس به نوع و ترکیب هسته ها (ورق های فولادی) بستگی دارد و بخش دیگر یعنی تلفات فوکو (یا تلفات جریان های سرگردان) است. میزان تلفات آهنی در تعیین مقدار ضریب توان موتور مؤثر است. تلفات آهنی در بار کم افزایش یافته و از این رو منجر به ایجاد ضرایب توان کم می شود. موتور القائی حتی در بار کامل نیز ضریب توان نسبتا” ضعیفی دارد مثلا” بین 8/0 تا 9/0 پس فاز می باشد. لذا به لحاظ اقتصادی لازم است تا جائی که میسر باشد در انتخاب مناسب و همسازی موتور با بار دقت کافی به عمل آید تا راندمان های کم و ضرایب توان ضعیف به حداقل ممکنه برسند. موتورهای کوچک درمقایسه با موتورهای بزرگتر مشخصه های ضریب توان ضعیف تری دارند و لذا در تأسیساتی که موتورهای کوچک زیادی به کار گرفته شوند احتمال کاهش ضریب توان وجود دارد.

چرا موتور های الکتریکی سه فاز کاربرد بیشتری نسبت به سایر موتور های دارند ؟

موتورهای جریان متناوب با توجه به ساختمان ساده ، قابلیت کنترل آسان ، تنوع وتعدد آنها از لحاظ قدرت ، از نظر اقتصادی وعدم نیاز به مراقبت های ویژه ،کاربرد بیشتری نسبت به سایر موتور های دارند .

سیم پیچی، نصب و تعمیر انواع الکترو موتور های صنعتی تک فاز و سه فاز، موتور آسانسور، مگنت ترمز، بالابر، ترانس جوش، چیلر، پمپ های زمینی و آب رسانی ساختمان ها

مقایسه موتورهای القایی با ترانسفورماتور :

اگر استاتور را سیم پیچ اولیه وروتور سیم پیچ ثانویه در نظر بگیریم ، استاتور قدرت خود را از شبکه دریافت می کند در صورتی که روتور قدرت خود را از طریق القاء الکترو مغناطیسی بدست می آورد .

موتور های القایی از دو قسمت تشکیل شده اند :

الف ) قسمت گردان یا متحرک که روتور نامیده می شود .

ب) قسمت ثابت که استاتور نام دارد .

روتورقفسی از چهار قسمت تشکیل شده است :

1- هسته روتور

2- هادی های روتور

3- حلقه های انتهایی

4- محور روتور

چرا تعداد شیار های روتور از تعداد شیار های استاتور کمتر است و مورب بودن شیار های روتور به چه منظوری است ؟

دلیل این امر برطرف کردن نقطه ی مرگ وجلوگیری از ایجاد شرایطی است که گشتاور راه اندازی را از بین می برد ، مورب بودن شیار ها به منظور کاهش اغتشاش مغناطیسی ویکنواخت کردن تغییرات گشتاور خروجی است .

استاتور از سه قسمت تشکیل شده است :

1- قاب استاتور : که معمولاً از آهن یا ورق ساخته می شود وظیفه ی حفاظت از ساختمان داخلی موتور وجلوگیری پراکندگی خطوط قوا را بر عهده دارد .

2- هسته استاتور : در داخل بدنه ی استاتور قرار دارد و از ورقه های شیار دار تشکیل می شود ،منظور از ورقه کردن هسته کاهش تلفات جریان گردابی یا تلفات فوکو است.

3- سیم بندی استاتور .

مراحل سیم پیچی استاتور موتور آسنکرون:

مرحله اول :

برداشتن مشخصات موتور از پلاک موتور : هر کارخانه سازنده مجموع اطلاعاتی را در پلاک موتور ارائه می دهد این اطلاعات را می توان به دو گروه دسته بندی کرد :

1- اطلاعات که مصرف کننده ها طبق آن با توجه به نیاز خود، موتور را انتخاب می کنند .

2- اطلاعاتی که به کارخانه ی سازنده مربوط می شود که با این اطلاعات کارخانه ی  سازنده ی خود موتور یا نظیر آن را مجدداً تولید کند.

مرحله دوم : پیاده کردن موتور :

مرحله سوم : تکمیل جدول

مرحله چهارم : درآوردن سیم های سوخته از داخل شیار های استاتور (که بهترین راه به وسیله ی اتصال ولتاژ 50 ولت )

مرحله پنجم: تمیز کردن هسته

مرحله ششم : عایق کاری

مرحله هفتم : آماده کردن کلاف های سیم پیچی

مرحله هشتم : سر بندی یا اتصال گروه کلاف ها شامل سه مرحله است :

الف)اتصال سری گروه کلاف ها

ب) اتصال موازی گروه کلاف ها

ج) اتصال سری موازی یا مختلط

مرحله نه : اتصال ها ولحیم کاری محل اتصال ها

مرحله ده : نواربندی یا نخ بندی

مرحله یازده : آزمایش مقدماتی موتور

الف ) آزمایش اتصال بدنه

ب) آزمایش اتصال حلقه

ج) بررسی صحت سربندی کلاف ها در فاز ها

مرحله دوازده : شار لاک یا لعاب دادن (یا پختن سیم پیچی ها)

سیم پیچی موتور و سیم پیچهای الکتروموتور

سیم پیچی موتور و سیم پیچهای الکتروموتور

سیم پیچ ترانسها اغلب از جنس مس یا آلومینیم انتخاب می شود سیم پیچهای ترانسهای كوچك را معمولاً روی قرقره می پیچند جنس قرقره ها اغلب از ترموپلاست است . در اصل بیشترین درصد اشكالات ترانسها در این قسمت نقش اصلی را ایفا می كند . سیم پیچها در كل به دو صورت هستند . نواری ، كه غیر قابل تعمیر می باشند یا به صورت طبقه طبقه می باشند كه به آنها دیسكی هم گفته می شود و قابل تعمیر هستند . سیم های به كار برده شده در ترانسها ، بسته به قدرت آنها تغییر می كنند مثلاً در قدرتهای پایین و متوسط از سیم های با سطح مقطع كوچك و گرد استفاده می شود . در ترانس هایی با قدرت بالا از شمشهایی با سطح مقطع مربعی و یا نواری استفاده می شود .

 

سیم پیچی موتور و سیم پیچهای الکتروموتور  سیم پیچی، نصب و تعمیر انواع الکترو موتور های صنعتی تک فاز و سه فاز، موتور آسانسور، مگنت ترمز، بالابر، ترانس جوش، چیلر، پمپ های زمینی و آب رسانی ساختمان ها

نحوه ی قرار گرفتن سیم پیچ ها

معمولاً در ترانسها قدرت ، ابتدا سیم پیچ ثانویه یا فشار ضعیف پیچیده می شود و سپس سیم پیچ اولیه یا فشار قوی پیچیده می شود . این كار به خاطر این است كه در صورت اتصالی ، سیم پیچ فشار قوی از هسته و اتصال به بدنه دور بماند و همچنین از بالا رفتن شدت میدان میان سیم پیچ اولیه و هسته جلوگیری شود .

نحوه ی اتصال سیم پیچ ها

در ترانسهای سه فاز بسته به شریط بارگیری ترانس ، اتصال سیم پیچ ها را تعیین می كنند . انواع اتصالات به شرح زیر می باشند :
1-           اتصال ستاره – ستاره (Y-y)
2-           اتصال ستاره – مثلث  (Y-d)
3-           اتصال مثلث – ستاره  (D-y)
4-           اتصال مثلث – مثلث   (D-d)
5-           ستاره – زیكزاك       (Y-z)
در میان اتصالات بالا فقط از یكی از آنها نمی توان در سیستم توزیع استفاده كرد . و آن هم اتصال ستاره – ستاره می باشد . در این اتصال ، در صورتی كه ترانس به صورت نا متقارن زیر بار رود ترانس می سوزد . علت این امر این است كه ، هنگامی كه از یك فاز به یك ترانس ستاره – ستاره جریان بیشتری كشیده شود در هسته شار بیشتری تولید می شود و هسته فوراً اشباع می شود و باعث گرم كردن بیش از حد می شود. از سوی دیگر هم برگشت این جریان از دو بازوی دیگر این ترانس می باشد و بر بازوهای دیگر هم تأثیر می گذارد . در چنین مواردی سع می شود در اولیه از اتصال مثلث استفاده شود . و در مواردی كه استفاده از اتصال مثلث غیر ممكن باشد از اتصال زیكزاك در ثانویه ی آن ترانس استفاده می شود تا بر روی دو بازوی ترانس در صورت نامتقارن بودن توزیع شود .

عیب یابی سیم پیچی موتور الکتریکی

سیم پیچی موتور الکتریکی مهمترین اجزایی هستند که در لوازم برقی گردنده بکار می روند.موتور الکتریکی انرژی الکتریکی را به انرژی مکانیکی تبدیل می کنند. الکتروموتور ها را می توان به سه دسته کلی تقسیم کرد.

1-موتور های آسنکرون

2 -موتور های یونیورسال

3-موتور با قطب چاکدار

سیم پیچی، نصب و تعمیر انواع الکترو موتور های صنعتی تک فاز و سه فاز، موتور آسانسور، مگنت ترمز، بالابر، ترانس جوش، چیلر، پمپ های زمینی و آب رسانی ساختمان ها

موتور الکتریکی آسنکرون

که با برق متناوب کار می کنند از دو قسمت روتور واستاتور ساخته شده اند.با روشن شدن موتور سیم پیچی موتور الکتریکی درون شیار های استاتور یک میدان مغناطیسی دوار بوجود می آورند که این میدان برروتور که قسمت گردنده موتور ودارای محور انتقال حرکت می باشد نیز اثر گذاشته ودر آن خاصیت مغناطیسی بوجود می آید .به هر حال با بوجود آمدن قطب های مغناطیسی هم نام وغیرهم نام عمل جذب ودفع انجام شده که باعث حرکت چرخشی روتور می گردد.برای راه اندازی موتور ها از حالت سکون روش های مختلفی بکار می برند که مهمترین آن ها عبارتند از:

الف- آسنکرون با راه انداز غیر خازنی (کلاجی ): در این موتور به غیر از سیم پیچی های موتور الکتریکی اصلی یک سری سیم پیچ کمکی نیز قرار دارد که میدان مغناطیسی دیگری با فاصله زمانی با میدان مغناطیسی اصلی بوجود می آورد.که باعث چرخش پرقدرت تر موتور می گردد. پس از این که سرعت موتور به 75 درصد سرعت اسمی رسید کلاج که تحت تاثیر نیروی گریز از مرکز کار می کند به عنوان یک کلید عمل کرده وسیم پیچ کمکی را از مدار خارج می کند.

ب – آسنکرون با راه انداز خازن موقت : این موتور دارای یک خازن الکترولیتی با ظرفیت حدود 200 الی 500 میکرو فاراد است که باسیم پیچ موتور الکتریکی کمکی بطور سری بسته شده وهر دوی آنها باسیم پیچ اصلی موازی بسته می شوند. خازن وسیم پیچ کمکی یک اختلاف فاز ودو میدان مغناطیسی بوجود می آورد که باعث چرخش موتور می گردد. در این موتور نیز کلید گریز از مرکز سیم پیچ کمکی را از مدار خارج می کند.

ج – آسنکرون با راه انداز خازن موقت وخازن دایم: یکی از خازن ها پس از راه اندازی از مدار خارج شده وخازن دیگر در حالتی که با سیم پیچ کمکی سری می باشد در مدار باقی می ماند.

د – آسنکرون با راه انداز خازن دایمی :در این موتور ها که دارای قدرت کم تری نسبت به موتور های قبلی هستند از یک خازن که با سیم پیچ کمکی سری بسته شده است استفاده شده و کلید گریز از مرکز ندارند بنابر این خازن به همراه سیم پیچ کمکی همیشه در مدار باقی است.

شناسایی سیم پیچ موتور الکتریکی اصلی و کمکی :

1- سیم پیچ های اصلی در زیر شیار ها و سیم پیچ کمکی در رو قرار دارند.

2-سطح مقطع سیم های کمکی همیشه از سیم های اصلی کمتر است.

3- سیم پیچ کمکی دارای مقاومت بیشتری (اهم بیشتر ) نسبت به سیم پیچ اصلی است وضمنا” خازن با سیم پیچ کمکی سری شده است.

عیب یابی موتور الکتریکی آسنکرون

معیوب شدن موتور ها یا مربوط به قطعات برقی مثل سیم پیچ ها وخازن است یا مربوط به قطعات مکانیکی مثل بلبرینگ و بوشن ها .

عیب یابی قطعات برقی :

عیب1- موتور اصلا”روشن نشده و جریانی از مدار عبور نمی کند.

علت1 – جایی از مدار قطع است.

رفع عیب1- با آوامتر تمام مدار شامل پریز،دوشاخه ،سیم های رابط،کلیدها واتصالات در تخته کلم موتور را بر رسی وعیب مربوطه را بر طرف می نماییم.

عیب2- موتور اصلا”روشن نشده وجریانی از مدار عبور نمی کند.

علت2 – سوختن فیوز.

رفع عیب2- ابتدا علت سوختن فیوز که مربوط به اتصالی می باشد را بررسی نموده پس از آن به تعویض فیوز می پر دازیم.

عیب3- موتور پس از روشن شدن خیلی زود داغ می شود.

علت3 – موتور نیم سوز است.

رفع عیب3- در هر کدام از سیم پیچی موتور الکتریکی کمکی واصلی میتواند اتصال حلقه ویا اتصال کلاف به کلاف بوجود آمده باشد.بنابر این مسیر جریان الکتریکی کوتاه شده در نتیجه میدان مغناطیسی مناسب برای گردش بوجود نمی آید وباعث داغی موتور میشود.موتور های نیم سوز جریان بیشتری نسبت به موتور های سالم مشابه خود دریافت می کنند. برای رفع عیب در صورتی که محل اتصالی مشخص باشد وبتوان به نحوی آن را عایق نمود اقدام کرده ودر غیر این صورت موتور باید دو باره سیم پیچی شود.

عیب4- موتور پس از روشن شدن خیلی زود داغ می شود.

علت4 – زیاد بودن بار موتور.

رفع عیب 4- هر موتوری دارای توان مکانیکی مشخص است در صورتی که بیش از توان مربوطه از موتور نیرویی خواسته شود جریان بیشتری از سیم ها عبور می کند که با سطح مقطع وتعداد دور آن ها همخوانی ندارد وباعث گرما در موتور و آسیب دیدن آن خواهد شد .برای رفع عیب باید بار موتور را کم نموده واز کار مداوم آن خود داری کرد.

عیب5- موتور پس از روشن شدن خیلی زود داغ می شود وزیر بار می خوابد.

علت 5 – عمل نکردن کلید گریز از مرکز .

رفع عیب 5 – علاوه بر جریان در یافتی توسط سیم پیچ اصلی ،سیم پیچ کمکی نیزچون از مدار خارج نمی شود جریان دریافت می کند .برای اطمینان از صحت عمل کرد کلید گریز از مرکز باید به صدای کنتاکت آن در حالت دور گرفتن موتور وهمچنین از دور افتادن آن گوش کرد .برای رفع عیب باید کلید سرویس ویا تعویض شود.

عیب 6- با روشن کردن موتور صدای زیادی شنیده می شود ولی به گردش در نمی آید.

علت 6- خرابی کلید گریز از مرکز .

رفع عیب 6- درصورتی که کنتاکت های کلید در حالتی که موتور خاموش بوده وصل نشده باشد.درزمان شروع بکار ،سیم پیچ راه انداز در مدار قرار نگرفته وطبیعتا”موتور بگردش نمی افتد.برای رفع عیب کلید را با آوامتر امتحان ودر صورت معیوب بودن تعویض می نماییم.

عیب 7- با روشن شدن موتور صدای زیادی شنیده می شود ولی به گردش در نمی آید.

علت 7 – قطعی سیم پیچی موتور الکتریکی اصلی یا کمکی .

رفع عیب 7 – به کمک آوامتر هر دو مدار را امتحان ودر صورت مشخص بودن محل پارگی ،آن را تعمیر می نماییم.

عیب 8 – با روشن شدن موتور صدای زیادی شنیده می شود ولی به گردش در نمی آید.

علت 8 – نیم سوز بودن یا سوختگی موتور .

رفع عیب 8 – موتور سریعا”داغ شده وجریان زیادی می کشد همچنین بوی سوختگی ویا دود از مشخصه های آن است.رفع عیب سیم پیچی مجدد است.

عیب 9 – با روشن کردن موتور صدای زیادی شنیده می شود ولی به گردش در نمی آید.

علت 9 – خرابی خازن.

رفع عیب 9 – خازن ها به منظور راه اندازی موتور بکار رفته اند خازن را مطابق با مطالبی که در مورد عیب یابی خازن ها گفتیم آزمایش نموده در صورت نیاز آن را تعویض می کنیم.

عیب 10 – با روشن کردن موتور فیوز عمل کرده مدار قطع می شود.

علت 10 – اتصال کوتاه در مدار اصلی موتور .

رفع عیب 10 – دوشاخه ،سیم های رابط وجعبه اتصالات موتور را بررسی کرده در صورت پیدا کردن محل اتصالی آن را رفع می نماییم.

عیب 11 – با روشن کردن موتور فیوز عمل کرده مدار قطع می شود.

علت 11 – سوختگی کامل موتور

رفع عیب 11 – با مشاهده استاتور وسیم پیچ های مربوطه عیب حاصل تایید گردیده وبرای رفع آن باید موتور سیم پیچی گردد.

عیب 12 – با روشن کردن موتور فیوز عمل کرده مدار قطع می شود.

علت 12 – اتصال کوتاه در خازن

رفع عیب 12 – اگر با جدا کردن خازن از مدار و به برق زدن موتور فیوز دیگر عمل نکرد عیب از خازن است وباید آن را تعویض نمود.

عیب یابی سیم پیچی موتور الکتریکی و قطعات مکانیکی:

عیب 1 – محور موتور چه در حالت روشن وچه در حالت خاموشی به سختی حرکت می کند.

علت 1 – بطور کلی خرابی بلبرینگ ها ویاطاقان های دو سر محور موتور .

رفع عیب 1 – خرابی بلبرینگ ها شامل

الف – ترک برداشتن حلقه های بلبرینگ،ترک بر داشتن ساچمه ها و غلطک ها .

ب – بوجود آمدن حفره وشیار در سطح داخلی حلقه ها که علت آن وجود ذرات سخت بین ساچمه وحلقه می باشد.

ج – گریپاژ (عدم چرخش ساچمه ها ) که ناشی از کثیفی و سخت شدن گریس بلبرینگ می باشد.

د – فرسودگی وپوسیدگی : که به علت جازدن نادرست بلبرینگ ونفوذ رطوبت وعدم گریس کاری مناسب بوجود می آید. برای تشخیس عیوب گفته شده بلبرینگ را از نظر ظاهری مشاهده ولقی بین حلقه وساچمه را امتحان می کنیم . همچنین با چرخش بلبرینگ اگر صدای غیر عادی شنیده شود دلیل برخرابی آن می باشد که باید تعویض گردد.

عیب 2 – گاهی اوقات محور موتور با صدای زیادی می چرخد.

علت 2 – چرخش حلقه بیرونی بلبرینگ در جای خود.

رفع عیب 2 – جازدن نادرست بلبرینگ وعدم گریس کاری می تواند باعث لقی بلبرینگ در جای خود شود . تعویض بلبرینگ در صورت معیوب بودن بوش زدن وتراش کاری جای آن یا تعویض دری موتور.

2- موتور های یونیورسال: این موتور ها که هم با جریان متناوب وهم با جریان مستقیم کار می کنند از دو قسمت اصلی تشکیل شده اند.

الف:قطب ها (بالشتک ها )

ب – آرمیچر

در این موتور ها میدان مغناطیسی قطب ها بر خلاف موتور های آسنکرون دوار نیست وسیم پیچ آرمیچر که قسمت گردنده موتور است با سیم پیچ قطب ها سری بسته شده است . پس از عبور جریان از مدار فوق خطوط قوای مغناطیسی قطب ها با خطوط قوای آرمیچر عکس العمل نشان داده وباعث گردش موتور می شود .سرعت این موتور ها بالا بوده وخیلی سریع به سرعت نهایی می رسند. از این موتور ها در اکثر لوازم برقی خانگی مثل چرخ گوشت ،آب میوه گیری ،هم زن ،آسیاب و… استفاده می شود. برای برقراری ارتباط قطب ها با آرمیچر که گردان می باشد از قطعه ای بنام کلکتور استفاده می شود . کلکتور از تیغه های مسی کنار هم تشکیل شده است که به شکل استوانه روی محور قرار دارد . تیغه ها ازهمدیگر واز محور آرمیچر بوسیله میکا عایق شده اند وسیم پیچ های داخل شیار آرمیچر به وسیله پیچک ها به یکدیگر وصل می شوند. دو قطعه ذغال به همراه فنر پشت آن ها ارتباط قطب ها با کلکتور را میسر می سازد.

عیب یابی موتور های یونیور سال :

عیب 1 – موتور روشن نمی شود.

علت 1 – نبودن برق.

رفع عیب 1 – پریز ،دوشاخه وسیم رابط را با آوامتر آزمایش نموده ورفع عیب می کنیم.

عیب 2 – موتور روشن نمی شود.

علت 2 – کوتاه شدن ذغال ها.

رفع عیب 2 – چون ذغال ها جزیی از مدار سری موتور می باشد.با کوتاه شدن آن ها ممکن است مدار قطع گردد وموتور روشن نشود با تعویض ذغال رفع عیب می شود در صورت نبودن ذغال در اندازه مورد نظر می توان از ذغال بزرگ تر استفاده کرده وبا سوهان آن را به اندازه دلخواه در آورد.

عیب 3 – موتور روشن نمی شود.

علت 3 – خرابی فنر ذغال ها

رفع عیب 3 – به منظور درگیر بودن همیشگی ذغال با کلکتور از قطعه ای فنر در پشت ذغال استفاده می شود گاهی در اثر رطوبت ویا کار زیاد خاصیت خود را از دست داده ومدار قطع می گردد. باتعویض فنر رفع عیب می شود.

عیب 4 – موتور روشن نمی شود.

علت 4 – قطعی بالشتک ها.

رفع عیب 4 – چون مدار سری می باشد هر نوع پاره گی وقطعی در بالشتک و یا قسمت های دیگر موتور باعث عدم کار کرد آن می شود .با آوامتر دو سر بالشتک ها را اهم گیری می کنیم .لازم به یاد آوری است هر دو بالشتک دارای اهم مساوی می باشند . در صورت پاره گی اگر قابل ترمیم می باشد این کار انجام ودر غیر این صورت بالشتک مجددا” باید سیم پیچی گردد.

عیب 5 – قدرت موتور کم وداغ می شود.

علت 5 – نیم سوز بودن آرمیچر .

رفع عیب 5 – سه روش برای آزمایش آرمیچر بکار می رود

الف- اهم گیری از تیغه های کلکتور با استفاده از آوامتر در صورت متفاوت بودن مقاومت پیچک ها (سیم پیچ ها ) سوختن واتصالی سیم پیچ ها حتمی است.

ب – آزمایش اتصال بدنه : در صورت سوختن سیم پیچ ها عایق بندی داخل شیار ها نیز سوخته وپیچک ها به بدنه متصل می شود. برای این آزمایش می توان از لامپ سری استفاده کرده وکلیه تیغه های کلکتور را مورد آزمایش قرار داد.

ج – آزمایش با دستگاه تستر آرمیچر (گرولر) این دستگاه تشکیل شده از یک سیم پیچ با هسته آهنی H شکل که یک طرف آن طوری مورب بریده شده تا آرمیچر داخل آن قرار گیرد . پس از برقراری برق دستگاه و قرار دادن آرمیچر روی آن یک تیغه اره روی شیار های بالایی آن می گذاریم در صورتی که اتصال بدنه داشته باشد هسته مغناطیسی شده وتیغه به لرزش در می آید. وبا چرخاندن آرمیچر می توان تمامی سیم پیچ ها را امتحان کرد.

3 – موتور با قطب چاکدار: این موتور که با برق متناوب تکفاز کار می کند با قدرت های 100/1 تا20/1 اسب بخار ساخته میشود. موارد استفاده آن کولر آبی ،دمنده ها ،باد زن ها و واتر پمپ کولر می باشد. قسمت های اصلی آن شامل بدنه واستاتور ،روتور وسپر ها (دری ها ) است . قطب های آن مثل موتور یونیورسال وروتور آن شبیه موتور آسنکرون می باشد برای گردش محور روتور از بلبرینگ ساچمه ای ویا بوش استفاده می شود قطب های برجسته آن شامل شیاری است که یک دور سیم مسی سیم پیچی موتور الکتریکی درون آن قرار دارد وبه اسم پیچک اتصال کوتاه نامیده می شود که به منظور راه اندازی موتور می باشد سیم پیچ های اصلی با پیچک های اتصال کوتاه سری بسته شده وبا برقراری جریان ،یک اختلاف میدان مغناطیسی بوجود می آید که باعث بوجود آمدن دو گشتاور لازم برای به چرخش در آمدن روتور می شود.

نكات مهم در تعويض سيم پيچي موتورهاي آسب ديده

برنامه هاي تضمين كيفي به وسيله صنايع تعمير موتور گسترش يابند هدف اين برنامه ها بهبود تجربه هاي ميداني به نحوي است كه سيم پيچي موتور در كارگاه تعميرات كمترين تاثير را بر روي راندمان الكتروموتور داشته باشد. اشكالهاي ايجاد شده در موتور ها در بيشتر موارد بيرينگها هستند كه اغلب به دنبال آن سيم پيچي استاتور ( عايق سيم پيچي) آسيب مي بيند. شكل 1 را ببينيد كه موقعيت قطعات داخلي يك موتور را نشان مي دهد . مقدار ميانگين و درصد توزيع تلفات در جدول 2 داده شده است . توزيع تلفات موتور ها ( به صورت درصد) در جدول 3 داده شده است .

سيم پيچي، نصب و تعمیر انواع الکترو موتور های صنعتی تک فاز و سه فاز، موتور آسانسور، مگنت ترمز، بالابر، ترانس جوش، چیلر، پمپ های زمینی و آب رسانی ساختمان ها

جدول 2 : توزيع ميانگين درصدي تلفات

فاكتور هاي موثر در تلفات

موتور 4 قطب

موتور 2 قطب

تلفات

هسته،فاصله هوايي،اشباع

21%

19%

تلفات هسته(wc)

راندمان فن،روانكاري،بيرينگ

10%

25%

تلفات اصطكاك و

چرخشي(wfw)

سطح مقطع هادي،طول ميانگين

دورها ،دفع حرارتي

34%

26%

تلفات مسي

استاتور(ws)

جنس ميله هاي رتور

و حلقه هاي انتهايي

آنها

21%

19%

تلفات مسي رتور

(wr)

فرآيند ساخت موتور ،طراحي—

،فاصله هوايي

14%

11%

تلفات پراكنده(wl)

توان موتور (اسب بخار)

نوع تلفات

100

50

25

28

38

42

مسي استاتور

18

22

21

مسي رتور

13

20

15

تلفات هسته

14

8

7

تلفات راصطكاك

27

12

15

تلفات پراكندگي

جدول 3: توزيع تلفات (بر حسب درصد) در موتورها با توانهاي مختلف

4- تعمير در مقابل تعويض

وقتي يك موتور دچار اشكال مي شود مالك آن با اين تصميم مواجه مي شود كه آنرا تعويض كند يا آنرا باز سازي مجدد كند كه نام ديگر بازسازي مجدد، سيم پيچي مجدد است . سيم پيچي مجدد معمولا هزينه اوليه كمتري نسبت به تعويض موتور دارد اين مطلب براي موتور هاي بزرگتر مشهودتر است.سيم پيچي مجدد در موارد بسيار نادر اگر با مهارت بالا انجام شود مي تواند راندمان را افزايش دهد هرچند كه سيم پيچي مجدد خيلي اوقات راندمان را كاهش و هزينه تلفات انرژي را افزايش ميدهد .براي آنكه بالاترين كيفيت در سيم پيچي مجدد تضمين شود بايد تجهيزات آزمايشگاهي و مدارك كافي در هنگام سيم پيچي در دسترس باشد . يك عمل بحران آفرين در هنگام سيم پيچي بيشتر موتورها تعويض سيم پيچي قديمي بدون ترميم ورقه هاي دينامو و پيچاندن سيم پيچي جديد بر روي هسته قديمي است . سيم پيچي قديمي به وسيله لايه اي از شالاك در شيار ها محكم شده اند كه مانع خارج شدن آنها از داخل شيارها در هنگام حركت موتور است . گرما ،مواد شيميايي يا نيروي مكانيكي كه يراي شل كردن و بيرون كشيدن سيم پيچ قديمي به كار مي رود اگر بيش از حد باشد مي تواند به هسته آسيب وارد نمايد. تدبير نادرست در تعويض بيرينگها ،قطر سيمها و تكنيكهاي سيم پيچي مي توانند عواملي باشند كه تنيجه آنها عملكرد ضعيف و راندمان پايين موتور است . گرچه از نظر تئوري، تعمير يك موتور با خصوصيتهاي اصلي آن ممكن است اما بررسي نتايج سيم پيچي بندرت اين مورد را نشان مي دهد . به طور ميانگين موتور هاي سيم پيچي شده داراي راندمان كمتر از زمان قبل هستند و اين مشكل مي تواند از يك كارگاه سيم پيچي به كارگاه ديگر متفاوت باشد و تنها زماني مي تواند به درستي مشخص شود كه اندازه گيريهاي راندمان قبل و بعد از سيم پيچي داده شده باشد.

1-4 نكات برجسته

از نظر تئوري امكان تعمير موتورها با راندمان مشابه قبلي يا بيشتر ممكن است اما نمونه هاي سيم پيچي همواره 1% كاهش راندمان را نشان مي دهد . صاحبان موتورها همواره با اين تصميم مواجه هستند كه يك موتور با راندمان استاندارد كه دچار اشكال شده است را تعمير يا با يك موتور نو با راندمان انرژي بالا جايگزين كنند . تصميم گيري نبايد بر اساس مقايسه پلاك موتور قديمي و جديد باشد چراكه موتور قديمي به واسطه عمر زياد و آسيبهاي برجا مانده از گذشته يا سيم پيچي مجدد پايينتر از توان درج شده برروي پلاك آن كار مي كند . به علاوه اگر موتور قديمي با تواني بيش از حد مورد نياز انتخاب شده باشد ( كه اغلب نيز چنين است) موتور جديد مي تواند كوچكتر باشد و به مقدار قابل توجه مي تواند هزينه ها را كاهش دهد . موتورهاي با راندمان انرژي بالا مي توانند عمر طولاني تري داشته باشند . هنگامي كه اين موارد در نظر گرفته شود آنگاه جايگزيني موتور آسيب ديده با راندمان انرژي استاندارد( پرهيز از سيم پيچي مجدد آن) با موتور با راندمان انرژي بالا اقتصادي به نظر مي رسد.

سيم پيچي مجدد در شرايط زير مقرون به صرفه خواهد بود

موتور ها با قدرت بالاتر از hp 125 كه كمتر از 2000 ساعت در يك سال كار كرده اند هنوز مي توانند كارا باشند و خيلي كم اتفاق مي افتد كه با تعويض آنها نتايج مطلوبي به دست آوريم به ويژه زماني كه موتور با راندمان بالاتر در دسترس نيست و هزينه برق پايين است.

صنايع تعمير موتور و مصرف كنندگان در تلاشند تا استاندارد هاي كيفيت ،آزمايش و آموزش سيم پيچي مجدد موتور را ارتقاء دهند به گونه اي كه راندمان موتورها با سيم پيچي مجدد حفظ يا حتي ارتقاء داده شود.

2-4 سياست شركت south wire در سيم پيچي مجدد

زماني كه بيشتر شركتها موتور هاي بالاتر از hp 10 را سيم پيچي مجدد مي كردند اين شركت كه يكي از بزرگترين سازندگان سيم و كابل در آمريكاست هيچ موتوري با توان پايين تر از hp 125 را سيم پيچي مجدد نمي كرد و در عوض موتور هاي با راندمان بالا را جايگزين مي كرد . فلسفه اين تدبير در زير آورده شده است

– تمام موتور هاي جديد بايد موتور هاي با راندمان بالا باشند. جدول 4 حداقل راندمان استاندارد شركت south wire را براي موتور هاي جديد نشان مي دهد . اين استاندارد ها از استاندارد nema نيز فزاتر مي رود .

– موتور هاي با توان پايين تر از hp 125 با موتور هاي با راندمان بالاتر جايگزين مي شوند و براي موتور هاي با توان بالاتر جايگزيني در صورتي انجام مي شود كه هزينه اضافي ناشي ارز خريد موتور با راندمان بالا بعد از 5 سال باز گردد.

– هنگامي كه موتور هاي با راندمان بالا مي سوزند در صورتي آنها را يسم پيچي مجدد مي كنيم كه هزينه اين كار 40% خريد يك موتور جديد باشد

– كارگاههاي سيم پيچي بايد سيستم كنترل دماي كوره داشته باشند

– انبار موتورهاي ضروري را با بهبود سيستم نگهداري سوابق موتورها ارتقاء دهيد . اين كار كمك مي كند تا تغييرات تعداد موتورها تعيين گردد . تمام موتورها در انبار بايد راندمان اانرژي قابل قبولي داشته باشند .

– موتورهاي مشخصي رادرانبار درنظر بگيريد اين موتورها بايد براساس برگشت سرمايه ، هزينه جايگزيني يا جايگزيني به جاي موتورهاي نامناسب فعلي انتخاب گردند ( اين موتور ها به عنوان stand by در نظر گرفته مي شوند) .

مرجع اين جدول، جدول 12-10 nema mg-1 1993 است

موتور 6 قطب

موتور 4 قطب

موتور 2 قطب

hp

حداقل راندمان

راندمان استاندارد

حداقل راندمان

راندمان استاندارد

حداقل راندمان

راندمان استاندارد

77

80

80

82.5

72

75.5

1

82.5

85.5

81.5

84

80

82.5

1.5

84

86.5

81.5

84

81.5

84

2

85.5

87.5

85.5

87.5

82.5

85.5

3

85.5

87.5

85.5

87.5

85.5

87.5

5

87.5

89.5

87.5

89.5

86.5

88.5

7.5

87.5

89.5

87.5

89.5

87.5

89.5

10

88.5

90.2

89.5

91

88.5

90.2

15

88.5

90.2

89.5

91

88.5

90.2

20

90.2

91.7

91

92.4

89.5

91

25

90.2

91.7

91

92.4

89.5

91

30

91.7

93

91.7

93

90.2

91.7

40

91.7

93

91.7

93

91

92.4

50

92.4

93.6

92.4

93.6

91.7

93

60

92.4

93.6

93

94.1

91.7

93

75

93

94.1

93.6

94.5

92.4

93.6

100

93

94.1

93.6

94.5

93.6

94.5

125

94.1

95

94.1

95

93.6

94.5

150

94.1

95

94.1

95

94.1

95

200

جدول-4: جدول حداقل استاندارد موتور هاي جديد شركت southwire

3-4 مقايسه اقتصاري سيم پيچي مجدد موتور درمقابل تعويض آن

بيشتر آناليزهاي اقتصاري دراين زمينه تنها به چند پارامنر تكيه دارند كه عبارتند از : اختلاف راندمان بين موتور جديد وموتور سوخته ، طرز استفاده (Duty factor) ، قيمت برق و قيمت ديماند . تعداد ديگر از آناليزها ملاحظات ديگري دارند كه عبارتند از : ارزش طول عمر ارزش صرفه جويي انرژي يا حداقل مصرف 0 يك آناليز جامع مي بايستي موارد زير را لحاظ كند .

1- راندمان موتور سوخته ممكن است به دليل آسيبهاي گذشته يا سيم پيچي چنددرصدي پايين تر از راندمان ثبت شده روي پلاك موتور باشد .

2- هزينه هاي موتور درطول زمان كاركرد ، ميزان صرفه جويي ناشي از افزايش راندمان يا حداقل يك تحليل ساده از برگشت سرمايه

3- در تعدادي از موارد پراهميت موتور آسيب ديده ممكن است تواني بيش از آنچه كه لازم بوده داشته باشد .اين مسئله راه را براي جايگزيني موتوري با توان پايين تر هموار مي سازد كه اين مي تواند هزينه ها را كاهش داده و اجازه مي دهد تا موتورهايي داشته باشيم كه نزديك به توان نامي خودكار كنند .

4- با نصب درست و نگهداري وخوب موتورهاي با راندمان انرژي بالا مي توانند مدت زمان بيشتري نسبت به موتورهاي سيم پيچي شده كار كنند .

به طوركلي موتورهاي جديد با راندمان انرژي بالا قيمتي معادل دوتا سه برابر بيشتر از قيمت تعمير موتورهاي زير 125HP و 6 برابر موتورهاي بزرگتر دارند با اينكه موتورهاي جديد با راندمان انرژي بالا هزينه سرمايه گذاري بيشتري نسبت به موتورهاي باسيم پيچي مجدد دارند اما به واسطه مصرف كمتر انرژي به سرعت هزينه هاي اوليه را برگشت مي دهند . همانطور كه پيش از اين گفتيم طول عمر يك موتور تجاري بالاتر از 4000 ساعت درهرسال است داده ها نشان مي دهد كه راندمان موتور سيم پيچي شده 2 درصد پايينتر از آن چيزي است كه روي پلاك آن درج گرديده است .

موتور با قدرت پايين ناديده گرفته مي شود . موتوري با صرفه انرژي بهتر انتخاب كنيد اگر

زمان كاركرد موتور در سال (مساوي يا بزرگتر)

هزينه برق

6000

.024/kwh 0 $

4000

03/kwh 0 $

3000

04/kwh 0 $

2000

05/kwh 0 $

به جز موتورهايي كه به عنوان يك بخش از يك بسته تجهيزاتي استفاده شده اند هرموتور القايي كه تواني برابر يا بيشتر 5KW داشته باشد و انتظار مي رود كه فراتر از 1000 ساعت درهرسال كاركند بايد از نوع موتورهاي با راندمان بالا انتخاب گردد (high-efficient) همچنين براساس آخرين استانداردهاي بين المللي نظير IEEE112-1991 يا IEC34-2 موردآزمايش واقع شده باشد . راندمان در باركامل براي چنين موتورهايي نبايد پايين تر از آنچه درجدول 5 آورده شده است .

حداقل راندمان

توان خروجي موتور

84

5kw<=p<7.5kw

85.5

7.5kw<=p<15kw

88.5

15kw<=p<37kw

90

37kw<=p<75kw

91.5

75kw<=p<90kw

92

p>=90

جدول 5 : حداقل راندمان نامي قابل قبويل براي موتور هاي تك سرعته و چند فاز در دور نام

جدول 6 نتايج آزمايش

مرحله اول: موتور ها بدون هيچ كنترل خاصي بر روي نوار پيچي و سيم پيچي مجدد بازسازي شدند

كارهاي انجام

شده

نوع سيم پيچي

بعدي

نوع سيم پيچي

قبلي

تغيير راندمان

راندمان بعد

از سيم پيچي

راندمان قبل

از سيم پيچي

ويژگي موتور

گريسكاري مجدد بيرينگها

3TC-1L

3TC-1L

-1%

93.1%

94.1%

1A 100HP,60HZ,4 POLE

-0.8%

استارترو بيرينگها تميز شدند

هر دو بيرينگ تميز شدند

-0.6%

بيرينگها تعويض شدند

-0.5%

ماشين 575 ولتي

L-2L

L-2L

-0.5%

92.4%

92.9%

2B 100HP,60HZ,4 POLE

گريسكاري مجدد بيرينگها

GC-21

GC-21

-1%

93.5%

94.5%

3C 100HP,60HZ,2 POLE

استارترو بيرينگها تميز شدند

-0.5%

هر دو بيرينگ تميز شدند

-0.5%

L-2L

L-2L

-0.5%

94.5%

95%

4D 100HP,60HZ,2 POLE

L-2L

L-2L

-0.3%

92%

92.3%

5E 150HP,60HZ,2 POLE

L-2L

L-2L

-0.4%

93.3%

93.7%

7B 150HP,60HZ,2 POLE

مرحله 2 : موتر ها با كنترل سيم پيچي مجدد شده اند

كارهاي انجام

شده

نوع سيم پيچي

بعدي

نوع سيم پيچي

قبلي

تغيير راندمان

راندمان بعد

از سيم پيچي

راندمان قبل

از سيم پيچي

ويژگي موتور

L-2L

L-2L

-1%

94.3%

94.4%

6F150HP,60HZ,2POLE

هسته تميز كاري نشد

L-2L

L-2L

-0.2%

89.9%

90.1%

9E 60HP,60HZ,2POLE

L-2L

L-2L

-0.2%

95.2%

95.4%

10D125HP,60HZ,4POLE

L-2L

L-2L

-0.1%

96.3%

96.4%

11F200HP,60HZ,2POLE

هسته معيوب

L-2L

L-2L

-0.7%

89.2%

89.9%

14H55KW,50HZ,4POLE

GC-21

GC-21

0.2%

95.6%

95.4%

16H150KW,50HZ,4POLE

3TC-1L

3TC-1L

0%

94.2%

94.2%

18G55KW,50HZ,4POLE

2TC-1L

2TC-1L

0%

93%

93%

19H132KW,50HZ,2POLE

3TC-1L

3TC-1L

0%

93.9%

93.9%

20H45KW,50HZ,2POLE

GC-21

GC-21

0.2%

93.9%

93.7%

21J75KW,50HZ,2POLE

موتور ولتاژ بالا

كارهاي انجام

شده

نوع سيم پيچي

بعدي

نوع سيم پيچي

قبلي

تغيير راندمان

راندمان بعد

از سيم پيچي

راندمان قبل

از سيم پيچي

ويژگي موتور

L-2L

L-2L

-0.2%

95.5%

95.7%

23K 225KW

50HZ,4POLE

3300 VOLT

شرح كد هاي به كار رفته در ويژگي موتور

3TC-1L : 3 رديف سيم پيچي متمركز يك كلاف در هر شيار

2TC-1L : 2 رديف سيم پيچي متمركز يك كلاف در هر شيار

2TC-2L : 2 رديف سيم پيچي متمركز دور كلاف در هر شيار

L-2L : سيم پيچي هم پوشاني 2 كلاف در هر شيار

GC-2L : يسم پيچي هاي متمركز در شيار ها در يك توالي چرخشي قرار دارند ( 2 كلاف در هر شيار )

GC-1L : يسم پيچي هاي متمركز در شيار ها در يك توالي چرخشي قرار دارند ( يك كلاف در هر شيار )

مرحله 3: سيم پيچي مجدد با تغيير نوع سيم پيچي و با كنترل روي فرآيند سيم پيچي

كارهاي انجام

شده

نوع سيم پيچي

بعدي

نوع سيم پيچي

قبلي

تغيير راندمان

راندمان بعد

از سيم پيچي

راندمان قبل

از سيم پيچي

ويژگي موتور

GC-11

GC-21

-0.6%

95.1%

95.7%

8C200HP,60HZ,4POLE

L-2L

-0.1%

95.6%

L-2L

L-2L

0%

95.9%

95.9%

12F 150HP,60HZ,2POLE

L-2L

0%

95.9%

L-2L

-0.1%

95.8%

3TC-1L

3TC-1L

-0.2%

94.6%

94.8%

13G 110KW,50HZ,4POLE

GC-11

-0.2%

94.6%

L-2L

GC-21

0.6%

93.6%

93%

15J 75HP,50HZ,4POLE

L-2L

0.6%

93.6%

L-2L

0.7%

93.7%

L-2L

2TC-1L

0.2%

86.9%

86.7%

17H 5.5 KW,50HZ,4POLE

L-2L

2TC-1L

0.8%

84%

83.2%

22H 5.5KW,50HZ,4POLE

تغييرات راندمان نسبت به راندمان قبل از سيم پيچي است

3TC-1L : 3 رديف سيم پيچي متمركز…………………………………………………………………. 1 يال در هر شيار

2TC-1L : 2 رديف سيم پيچي متمركز………………………………………………………………….. 1 يال در هر شيار

2TC2L : 2 رديف سيم پيچي متمركز……………………………………………………………………. 2 يال در هر شيار

L-2L : يسم پيچي هم پوشاني………………………………………………………………………………. 2 يال در هر شيار

GC-2L : گروه سيم پيچهاي متمركز در شيارها در يك ترتيب چرخشي قرار گرفته اند . 2 يال در هر شيار

GC-1L : گروه سيم پيچهاي متمركز در شيارها در يك ترتيب چرخشي قرار گرفته اند .. 1 يال در هر شيار

6- چه وقت بايد به جاي تعمير ، تعويض كنيم

سئوال بسيار ساده اي است . سيم پيچي مجدد يا به بيان ديگر تعمير يك موتور زماني بايد انجام شود كه ارزانتر از خريد يك موتور جديد باشد . انجام چنين اصل ساده اي ممكن است قدري مشكل تر باشد چرا كه شما بايد ملاحظات قيمت كلي را انجام دهيد شما بايد موارد زير را در نظر بگيريد:

1- هزينه اوليه تعمير در مقابل خريد يك موتور جديد

2- راندمان موتور موجود و موتور جديد پيشنهادي

3- قابليت در دسترس بودن موتور جديد

4- كاهش هزينه انرژي الكتريكي در طول زمان عملكرد موتور براي هر گزينه

5- قيمت اوراقي موتور موجود

6- امكان طراحي و نصب موتور جديد

7- هزينه هاي ناشي از توقف زود هنگام موتور تعميري يا جديد

نكته كليدي براي تصميم گيري در مورد خريد موتور جديد، ميزان صرفه جويي در مصرف ساليانه انرژي با نصب موتور جديد است.

ميزان صرفه جويي انرژي را مي توان از رابطه زير به دست آورد

KWSAVED=HP*L*0.746*(1/Eex-1/En)

كه

HP :توان نامي موتور

L : بار (جريان) مصرفي موتور به صورت درصدي از بار نامي

Een : درصد راندمان موتور موجود بعد از سيم پيچي

Een :درصد راندمان موتور جديد تعويضي

{ 12 × هزينه ديماند ساليانه ميزان×( فرمول بالا) توان صرفه جويي شده} = ميزان كل صرفه جويي

{ كيلو وات ساعت نامي ×ساعت كاركرد ساليانه موتور ×( فرمول بالا) توان صرفه جويي شده } +

نرم افزار MOTOR MASTER+ يك نرم افزار مناسب يراي انجام اين فرآيند محاسباتي است . اين نرم افزار به طور پيش فرض هزينه تعمير موتور و خريد موتور جديد را محاسبه مي كند و ميزان برگشت سرمايه يا هزينه هاي زمان كاركرد موتور تعميري و جديد را با هم مقايسه مي كند.اگر نياز به دقت بيشتر در محاسبات باشد مي تواند از ويرايشهاي جديدتر آن استفاده كرد .بهتر از همه استفاده از مشاوران قابل اطمينان يا مراكزي هستند كه خدمات موتوري انجام ميدهند.

بر اساس استاندارد، در موتور هاي آماده به كار گزينه نعمير به ندرت بر تعويض مي چربد مگر آنكه به مصرف كننده اطمينان داده شود كه راندمان موتور بالاست و راندمان بعد از سيم پيچي حفظ شود و موتور سيم پيچي شده به اندازه موتور جديد قابل اطمينان است . تمام اين موارد امكان پذير است اما تضمين شده نيست .

موتور هاي امروزي داراي راندمان بالايي هستند. اتحاديه كارخانه هاي ملي الكتريكي ( NEMA ) استانداردهاي برچسب گذاري براي انرژي-راندمان موتور هاي الكتريكي بين 1 تا 500 اسب بخار ايجاد كرده است . سند پيمان سياست گذاري انرژي و حفظ منابع طبيعي ( EPCA ) مصوب سال 1992 حداقل راندمان استاندارد براي موتور هاي 1 تا 200 اسب بخاري را تعيين كرده است . بسياري از موتور هاي با كيفيت و البته گران قيمت امروزه از اين حداقلها نيز فراتر رفته اند .

هر شركت تعميراتي با دو چالش روبروست : تجهيز را به درستي تعمير كند و به مشتريان با كمك آزمايشهاي كافي و با سند و مدرك نشان دهد كه موتور سيم پيچي شده مي تواند راندمان خود را حفظ كند . اگر از بايد ها و نبايد هايي كه در زير مي آيند پيروي كنيد به شما كمك مي كند تا از عهده هر دو چالش به خوبي برآييد.

مطالعات بيشماري جهت تعيين آثار سيم پيچي مجدد موتور بر روي راندمان آن انجام شده است . بر اساس اين مطالعات متغيرهاي زيادي شناخته شده اند كه مي توانند راندمان موتور سيم پيچي شده را تحت تاثير قرار دهند . اين متغيرها عبارتند از : حداكثر درجه حرارت هسته موتور بعد از سيم پيچي ،طراحي سيم پيچي، نوع بيرينگ،مقاومت سيم پيچي و فاصله هوايي. خط مشي هاي زير نتيجه اين مطالعاتند كه نشان مي دهند راندمان موتور هاي استاندارد معمولي و موتور هاي با راندمان بالا مي توانند در طي فرآيند سيم پيچي مجدد حفظ شوند .

EASA توصيه اكيد دارد كه مراكز تعمير موتور هاي الكتريكي به راه كارهاي عملي توصيه شده در مورد تعمير تجهيزات دوار عمل كنند و به بايدها و نبايدهايي كه در زير آورده مي شود وفادار بمانند.اين خط مشي ها شامل مقادير ايمن( بر اساس اطلاعات قابل دسترس) و عملكرد صحيح هم براي موتور هاي استاندارد معمولي و هم براي موتور هاي با راندمان بالا قابل استفاده اند . مطالعه و بررسي بيشتر اين خط مشي ها ادامه دارد و در صورت به دست آوردن اطلاعات اضافي اين خط مشي ها مورد تجديد نظر قرار خواهند گرفت .

بايدها

1- داشتن برنامه مطمئن كيفيت

2- ايجاد يك برنامه كاليبراسيون كه اطمينان از دقت تمام اندازه گيريها و آزمايشها را به همراه آورد

3- جايگزيني تمام ورقه هاي ديناموي آسيب ديده

4- ارزيابي پيچيده روي راندمان قبل از تغيير طراحي سيم پيچي

5- اندازه گيري و ثبت مقاومت سيم پيچي و درجه حرارت اتاق

6- اندازه گيري جريان و ولتاژ در آزمايش نهايي

نبايد ها

1- هسته هاي استاتور را تحت گرماي بيش از حد قرار ندهيد

2- از گرماي مستقيم و زيادي براي تخليه سيم پيچي استفاده نكنيد

3- از سند بلاست براي هسته آهني استفاده نكنيد

4- ورقه هاي دينامو را هنگام تخليه و پركردن سيم اتصال كوتاه ننماييد

5- مقاومت سيم پيچ استاتور را افزايش ندهيداز كنگره دار كردن ، پين و يا رنگ جهت سفت كردن بيرينگ پرهيز كنيد

6- بدون مشورت با مشتري هيچگونه تغييري انجام ندهيد آنچه در پيش روي شماست يك مبحث از نكات ويژه است

1-6 بايد ها

1- يك برنامه مطمئن و با كيفيت داشته باشيد مطمئن شويد كه تهيه كننده مواد اوليه شما آنچه را كه سفارش داده ايد دنبال مي كند . سيم هاي سيم پيچي را بررسي كنيد و مطمئن شويد كه قرقره ها از سازنده معتبر هستند . سيم هاي اتصال و مواد عايقي داراي اندازه درست باشند مدارك مربوط به آزمايشهاي خود به خصوص چگونگي تخليه سيم پيچي ، درجه حرارت كوره دفعات و مدت قرار دادن سيم پيچي جديد در آن را نگاه داريد. شالاك موتور را در فاصله هاي زماني كه توسط سازنده شالاك قيد گرديده است مورد آزمايش قرار دهيد .

2- يك برنامه كاليبراسيون داشته باشيد كه به وسيله آن از تمام اندازه گيريهاي صورت گرفته توسط دستگاهها اطمينان داشته باشيد . دستگاههاي اندازه گيري خود را حداقل سالي يك بار به وسيله شركتهاي انجام دهنده كاليبراسيون كاليبره كنيد . اين شركتها بايد توسط موسسه استاندارد ها و تكنولوژي هاي ملي ( NIST )،‌ انجمن تحقيقات ملي كانادا ( NRC ) يا يك آزمايشگاه معادل اينها مورد تاييد باشند . براي آزمايش هسته ، از وسايل اندازه گيري استفاده كنيد كه مقادير RMS واقعي را قرائت كند چراكه در آزمايش هسته ولتاژها و جريانها ممكن است حاوي هارمونيك باشند .

3- آزمايش هدايت هسته استاتور قبل و بعد از تخليه آن : نتايج آزمايش هسته قبل و بعد از سيم پيچي را به عنوان سند نگاه داريد تا به مشتري نشان دهيد كه به هسته آسيبي وارد نكرده ايد

براي آزمايش تلفات هسته از اين سند مي توان استفاده كرد شما مي توانيد يك واتمتر تك فاز به مدار ببنديد همچنين مي بايد ولتاژ تحريك را به گونه اي تنظيم كنيد كه در محاسبات شما آمده است. همچنين مهم است كه اطمينان حاصل كنيد كويل استفاده شده براي تكرار آزمايش بعد تا حد امكان نزديك به آزمايش قبل باشد.

4- جايگزيني تمام ورقه هاي صدمه ديده دينامو:كليه ورقه هاي دينامو اتصال شده را جدا نماييد وقتي هسته را دوباره سر هم ميكنيد يك طرف ورقه هاي دينامو را شالاك بزنيد . شالاك را آنچنان كه توصيه شده گرم كنيد و توده هاي ورقه با يك طرف رنگ نشده را به يك طرف رنگ شده خشك اتصال دهيد ( يك ورقه دينامو داراي دو رويه است يكي شالاك خورده و ديگري بدون شالاك است . موقع وصل دو ورقه دينامو به هم يك رويه شالاك خورده از يك دينامو را به رويه بدون شالاك ديگري متصل نماييد) . اگر ورقه هاي دينامو جديد بايد بريده شود نمونه اي از آن را براي تهيه كننده ارسال كنيد .

مطمئن شويد كه تلفات در ورقه هاي ديناموي جديد برابر يا كمتر از ورقه هاي ديناموي اصلي باشد .

5- ارزيابي تاثير تغيير سيم پيچي از متمركز به لب تولب يابرعكس روي راندمان

اين نمونه ازتغيير مي تواند تاثير برتلفات سرگردان (‌هسته و فوكو) و مقاومت سيم پيچي را افزايش دهد.

ازتغييرات كه باعث كاهش سطح مقطع كلي هادي ها ،‌افزايش ميانگين طول يك دور مي شود اجتناب نماييد . بعبارت ديگر از انجام تغييراتي كه بر مقاومت كل سيم پيچي اثرمي گذارد اجتناب نمائيد . تغييرات نادرست ممكن است نه تنها راندمان بلكه سايرشرايط موتور را نيز تغييردهد.

6- مقاومت سيم پيچ و دماي اتاق را اندازه گيري وثبت نماييد . از آنجايي كه مقاومت متاثر از دما مي باشد هردو ،‌ مقاومت ودماي سيم پيچي را اندازه بگيرد .

7- جريان و ولتاژ را درطول آزمايش نهايي ،‌ اندازه گيري وثبت نمائيد . جريان و ولتاژ تمام فازها را اندازه گيري و ثبت كنيد. ولتاژ زياد باعث افزايش جريان بي باري مي گردد . نامتعادل شدن ولتاژ باعث نامتعادلي بيشتر در جريان ميشود اگر جريانها نامتعادلند جاي فاز ها را با هم عوض كنيد اين كار را به گونه اي انجام دهيد كه جهت چرخش موتور تغيير نكند. اكنون دوباره موتور را آزمايش نماييد كه آيا هيچ افزايش جريان روي تابلو يا موتور وجود دارد اگر اختلاف نيست موتور سالم است وگرنه ممكن است كه موتور مشكلي دارد . از يادداشتها و قرائت هايتان مطمئن شويد .

نبايدها

1- هسته هاي استاتور را زياد گرم نكنيد بخش مطالعات هسته ESA مطالعات روي هسته آهني

( 1984) وانجمن تجاري مكانيكي والكتريكي (AEMT) تعمير موتورهاي القايي ،‌ بهترين روش درنگهداري راندمان انرژي 1994 ،‌ ثابت كرده اند كه تاثير حرارت بالاي بستگي به نمونه عايقي ورقه هاي دينامو دارد . موارد ارگانيك ( C3 ) دردماي پايين تراز مواد غير ارگانيك ( CS )‌تخريب مي شوند درخاتمه روشن است كه تخليه استاتور بادماي زياد ، باعث تخريب پوشش ورقه هسته دينامو مي گردد كه باعث اتصال كوتاه بين ورقه ها ،‌افزايش تلفات هسته براي اين دليل EASA توصيه مي كند كه ماكزيمم دماي هسته نبايد بيش از6800F (C 3600) براي ارگانيك و F 7500 (C 4000) براي ورقه هاي غيرارگانيك ، بيشترهسته هاي جديد ممكن است تحمل درجه هاي بالا راداشته باشند اگردرباره ورقه هاي ديناموشك داريد با كارخانه سازنده تماس حاصل نماييد .

به كاتولوگ EASA بخش ……………… مراجعه نمايند.

براي تماس جهت اطلاعات به وب سايت EASA ( WWW. Easa.com) براي جلوگيري ازحرارت زياد به توصيه هاي كارخانه هاي سازنده كوره توجه كنيد ، وقتي كه كوره را بارگذاري مي نمائيد . كوره هاي متفاوت داراي دستور عملكرد متفاوتي هستند . هيچ گاه استاتورها را روي هم بگذاريد و يا استاتورهاي كوچكتر را درون استاتورهاي بزرگتر نگذاريد.

جهت خاموش كردن كوره ميبايست تبخيري كه آب را بصورت اسيدي مي پاشد بطور اتوماتيك فعال شود و زماني كه چيزي در داخل كوره آتش مي گيرد يا اگر درجه نقطه اي قطعه اي بيش از نقطه تنظيم بالا رود اين افزايش دما مي تواند بستگي به موقعيت آن دركوره داشته باشد كه مي بايستي بايك جارت ركوردرنظارت كرد.

2- از آتش مستقيم براي تخليه استفاده نكنيد ،‌ استفاده ازگرماي بدون كنترل باعث كاهش خواص ورقه هاي هسته وكج ومعوج شدن آنها مي شود .

3- هسته آهني را سند پلاست نكنيد . پلاست با ماسه يا هرماده سخت ديگر ، مي تواند باعث اتصال كوتاه بين ورقه هاي دينامو گردد وافزايش تلفات هسته مي گردد از دانه شيشه اي ، بوت گردو ،‌چوب ذرت وامثالهم استفاده كنيد .

4- ورقه هاي دينامو را هنگام تخليه يا پركردن اتصال كوتاه نكنيد اگر روش تخليه سيم پيچي درست نباشد مي تواند باعث اتصال كوتاه ورقه هاي دينامو شود . بنابراين سبب افزايش تلفات هسته مي شود هنگامي كه شالاك را از شيارهاي استاتور بعداز گرم كردن خارج مي نمايند دقت و احتياط نماييد كه از افزايش قطر اجتناب شودوياسبب اتصالي درورقه هاي دينامو نشود.

5- فاصله هوايي را افزايش ندهيد . افزايش قطرداخلي استاتور يا اقدام به كاهش قطر رتور باعث افزايش فاصله هوايي مي گردد.اين روش عملكرد ، يك جريان مغناطيس كننده زياد كه ممكن است اثرات ناجور برتلفات داشته باشد به سمت موتور در هنگام كار جاري مي سازد .

6- مقاومت سيم پيچ استاتور را افزايش ندهيد .

به دقت سايز سيم را با يك ميكرومتر بعداز پاك كردن شالاك از روي سيم ،‌اندازه گيري نماييد . از آنجايي كه بيشتر سازنده هاي موتور امروزه ازسايزهاي يك دوم يا متريك استفاده مي كنند از واير گيج براي سايز كردن سيم استفاده نكنيد . سطح مقطع نهايي سيم نبايستي كاهش داده شود وتغييراتي كه سبب تغيير تعداد دور سيم پيچ گردد اجتناب شود.

قبل از بهم ريختن سيم پيچ به دقت ابعاد كويل را اندازه گيري و يادداشت نماييد . گام ،‌طول پيشاني وتعداد دور را به دقت بشماريد و مطمئن شويد كه تمام گروه كويل ها را شمرده ايد . اگراختلاف بين گروه هاي مشابه يافتيد گروه هاي مشابه رابررسي محدود نماييد . هنگام تعويض كلاف ها (‌كوبل ها) توجه نماييد كه گروه كلافهاي بعدي قابل سيم پيچي باشند . كشش زياد مي تواند باعث افزايش طول سيم ،‌ بنابراين كاهش قطر ، افزايش مقاومت سيم و به دنبال آن سبب افزايش تلفات مسي استاتور مي گردد .

7- از كنگره دار كردن ، پين و يا رنگ جهت سفت كردن بيرينگ پرهيز كنيد .سفت كردن بيرينگ نبايستي توسط سنبه ،پين يا رنگ كردن انجام گيرد زيرا انجام آنها باعث شل شدن بيرينگ هنگام كار خواهد شد . شل بودن باعث افزايش اصطكاك و خراب شدن سريع بيرينگ مي شود .

سیم پیچی و تعمیر ماشین های الکتریکی

با توجه به گسترش روز افزون کاربرد دستگاه ها و موتورهای الکتریکی در صنعت، سیستم آموزشی کشور، برنامه ریزی آموزش فناوری ماشین های الکتریکی به هنرجویان هنرستان های فنی و حرفه ای و کاردانش را در دستور کار خود قرار داده است.

سیم پیچی و تعمیر ماشین های الکتریکی

در این راستا شرکت صنایع آموزشی به منظور هم سویی و محقق ساختن اهداف برنامه ریزی آموزشی، اقدام به طراحی و تولید مجموعه آموزش سیم پیچی و تعمیر ماشین های الکتریکی کرده است. هدف از تولید این مجموعه، آموزش مفاهیم نظری و عملی به صورت علمی-کاربردی و اشاعه فرهنگ آموزش عملی با استفاده از جدیدترین دستگاه ها و شیوه های آموزش به هنرجویان هنرستان های فنی و حرفه ای و کاردانش و نیز کارآموزان سازمان فنی و حرفه ای کشور می باشد.

اشغال حداقل فضای کارگاه با تجهیزات مورد نیاز
رعایت اصول ارگونومی در طراحی میزهای مورد استفاده
ارائه آموزش های مورد نظر با اصول مهندسی برق و منطبق با استانداردهای آموزشی
دارای کمد نگهداری وسایل و تجهیزات آزمایشگاه
دارای دستور کار

تجهیز میز آزمایش موتور و سیم پیچی به سیستم محافظت جان و فیوز مینیاتوری و رله اضافه بار
استفاده از ولتاژهای پایین برای آزمایش موتورهای سه فاز و تکفاز
نمایش ولتاژ و کلیه جریان ها به صورت دیجیتال
استفاده از سیستم ولتاژ متغیر AC (اتو ترانس)
مجهز به خروجی های 6، 12 و 24 ولت AC,DC
امکان آزمایش قطعات الکتریکی به وسیله اتصال سنج
استفاده از تجهیزات و قطعات مطابق با استانداردهای آموزشی
استفاده از میز کار مناسب برای کاربر

ميز با بدنه فلزي ، رويه نئوپان داراي روكش مرغوب منبع تغذيه ، خروجي سه فاز متغير (در سه رنج ) ، ولتاژ متغير، ولتاژ DC متغير ، لامپ آزمايش ، اتصال سنج ،امكان تست موتور تك فاز ، امكان اندازه‌گيري جريان و ولتاژ توسط دستگاه‌هاي اندازه‌گيري نصب شده روي ميز ، قطع و وصل شاسي‌هاي استپ و استارت و اضطراري محافظت توسط فيوزهاي مينياتوري و رله حفاظت جان با حساسيت 30 ميلي‌آمپر
موتور سه فاز با برش براي نمايش قسمت‌هاي مختلف داخل موتور و رنگ‌آميزي محل برش ، نصب بر روي پايه چوبي
میز کارگاهی با اسکلت فلزي و رويه از ورق چند لا با ضخامت 4 سانتی‌متر
دستگاه کنترل بار، مناسب براي اعمال باردهي به موتورها از توان kw75/0تاw2/2

متعلقات:

ميز آزمايش موتور به همراه پانل تغذيه
مدل برش خورده موتور القايي
ميز كار كارگاهي هنرجو
میز حمل موتور
كمد محتوی ابزار و لوازم و تجهيزات مورد نیاز
مدل‌آموزش سربندي وعيب‌يابي موتور
دستگاه عيب‌ياب دستی موتور
دستگاه كنترل‌بارو ترمز موتورهاي الكتريكي
مدل آموزشی تولید ميدان دوار مغناطيسي
مجموعه آموزشي كليدهاي صنعتي
مدل گسترده آموزش سيم‌پيچي 24 و 36 شیار
راهنمای استفاده از مجموعه

سیم پیچی الکتروموتور و سیم پیچها

سیم پیچی الکتروموتور و سیم پیچها

سیم پیچ ترانسها اغلب از جنس مس یا آلومینیم انتخاب می شود سیم پیچهای ترانسهای كوچك را معمولاً روی قرقره می پیچند جنس قرقره ها اغلب از ترموپلاست است . در اصل بیشترین درصد اشكالات ترانسها در این قسمت نقش اصلی را ایفا می كند . سیم پیچها در كل به دو صورت هستند . نواری ، كه غیر قابل تعمیر می باشند یا به صورت طبقه طبقه می باشند كه به آنها دیسكی هم گفته می شود و قابل تعمیر هستند . سیم های به كار برده شده در ترانسها ، بسته به قدرت آنها تغییر می كنند مثلاً در قدرتهای پایین و متوسط از سیم های با سطح مقطع كوچك و گرد استفاده می شود . در ترانس هایی با قدرت بالااز شمشهایی با سطح مقطع مربعی و یا نواری استفاده می شود .

سیم پیچی الکتروموتور و سیم پیچها

نحوه ی قرار گرفتن سیم پیچ ها
معمولاً در ترانسها قدرت ، ابتدا سیم پیچ ثانویه یا فشار ضعیف پیچیده می شود و سپس سیم پیچ اولیه یا فشار قوی پیچیده می شود . این كار به خاطر این است كه در صورت اتصالی ، سیم پیچ فشار قوی از هسته و اتصال به بدنه دور بماند و همچنین از بالا رفتن شدت میدان میان سیم پیچ اولیه و هسته جلوگیری شود .
نحوه ی اتصال سیم پیچ ها
در ترانسهای سه فاز بسته به شریط بارگیری ترانس ، اتصال سیم پیچ ها را تعیین می كنند . انواع اتصالات به شرح زیر می باشند :
1-           اتصال ستاره – ستاره (Y-y)
2-           اتصال ستاره – مثلث(Y-d)
3-           اتصال مثلث – ستاره (D-y)
4-           اتصال مثلث – مثلث (D-d)
5-           ستاره – زیكزاك (Y-z)
در میان اتصالات بالا فقط از یكی از آنها نمی توان در سیستم توزیع استفاده كرد . و آن هم اتصال ستاره – ستاره می باشد . در این اتصال ، در صورتی كه ترانس به صورت نا متقارن زیر بار رود ترانس می سوزد . علت این امر این است كه ، هنگامی كه از یك فاز به یك ترانس ستاره – ستاره جریان بیشتری كشیده شود در هسته شار بیشتری تولید می شود و هسته فوراً اشباع می شود و باعث گرم كردن بیش از حد می شود. از سوی دیگر هم برگشت این جریان از دو بازوی دیگر این ترانس می باشد و بر بازوهای دیگر هم تأثیر می گذارد . در چنین مواردی سع می شود در اولیه از اتصال مثلث استفاده شود . و در مواردی كه استفاده از اتصال مثلث غیر ممكن باشد از اتصال زیكزاك در ثانویه ی آن ترانس استفاده می شود تا بر روی دو بازوی ترانس در صورت نامتقارن بودن توزیع شود .

چرا موتور های الکتریکی سه فاز کاربرد بیشتری دارند

موتور های الکتریکی جریان متناوب با توجه به ساختمان ساده ، قابلیت کنترل آسان ، تنوع وتعدد آنها از لحاظ قدرت ، از نظر اقتصادی وعدم نیاز به مراقبت های ویژه ،کاربرد بیشتری نسبت به سایر موتور های دارند .

موتور های الکتریکی

مقایسه موتورهای القایی با ترانسفورماتور :

اگر استاتور را سیم پیچ اولیه وروتور سیم پیچ ثانویه در نظر بگیریم ، استاتور قدرت خود را از شبکه دریافت می کند در صورتی که روتور قدرت خود را از طریق القاء الکترو مغناطیسی بدست می آورد .

موتور های القایی از دو قسمت تشکیل شده اند :

الف ) قسمت گردان یا متحرک که روتور نامیده می شود .

ب) قسمت ثابت که استاتور نام دارد .

روتورقفسی از چهار قسمت تشکیل شده است :

1- هسته روتور

2- هادی های روتور

3- حلقه های انتهایی

4- محور روتور

چرا تعداد شیار های روتور از تعداد شیار های استاتور کمتر است و مورب بودن شیار های روتور به چه منظوری است ؟

دلیل این امر برطرف کردن نقطه ی مرگ وجلوگیری از ایجاد شرایطی است که گشتاور راه اندازی را از بین می برد ، مورب بودن شیار ها به منظور کاهش اغتشاش مغناطیسی ویکنواخت کردن تغییرات گشتاور خروجی است .

استاتور از سه قسمت تشکیل شده است :

1- قاب استاتور : که معمولاً از آهن یا ورق ساخته می شود وظیفه ی حفاظت از ساختمان داخلی موتور وجلوگیری پراکندگی خطوط قوا را بر عهده دارد .

2- هسته استاتور : در داخل بدنه ی استاتور قرار دارد و از ورقه های شیار دار تشکیل می شود ،منظور از ورقه کردن هسته کاهش تلفات جریان گردابی یا تلفات فوکو است.

3- سیم بندی استاتور .

مراحل سیم پیچی استاتور موتور آسنکرون:

مرحله اول :

برداشتن مشخصات موتور از پلاک موتور : هر کارخانه سازنده مجموع اطلاعاتی را در پلاک موتور ارائه می دهد این اطلاعات را می توان به دو گروه دسته بندی کرد :

1- اطلاعات که مصرف کننده ها طبق آن با توجه به نیاز خود، موتور را انتخاب می کنند .

2- اطلاعاتی که به کارخانه ی سازنده مربوط می شود که با این اطلاعات کارخانه ی سازنده ی خود موتور یا نظیر آن را مجدداً تولید کند.

مرحله دوم : پیاده کردن موتور :

مرحله سوم : تکمیل جدول

مرحله چهارم : درآوردن سیم های سوخته از داخل شیار های استاتور (که بهترین راه به وسیله ی اتصال ولتاژ 50 ولت )

مرحله پنجم: تمیز کردن هسته

مرحله ششم : عایق کاری

مرحله هفتم : آماده کردن کلاف های سیم پیچی

مرحله هشتم : سر بندی یا اتصال گروه کلاف ها شامل سه مرحله است :

الف)اتصال سری گروه کلاف ها

ب) اتصال موازی گروه کلاف ها

ج) اتصال سری موازی یا مختلط

مرحله نه : اتصال ها ولحیم کاری محل اتصال ها

مرحله ده : نواربندی یا نخ بندی

مرحله یازده : آزمایش مقدماتی موتور

الف ) آزمایش اتصال بدنه

ب) آزمایش اتصال حلقه

ج) بررسی صحت سربندی کلاف ها در فاز ها

مرحله دوازده : شار لاک یا لعاب دادن (یا پختن سیم پیچی ها)

موتور الکتریکی

موتور الکتریکی

میدان مغناطیسی چرخنده به عنوان مجموعی از بردارهای مغناطیسی کوئل‌های سه‌فازه.

میدان مغناطیسی چرخنده به عنوان مجموعی از بردارهای مغناطیسی کوئل‌های سه‌فازه.
تصویر چند نوع موتور
تصویر چند نوع موتور
موتور الکتریکی (به انگلیسی: Electric motor)، نوعی ماشین الکتریکی است که الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته‌است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکترواستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای، چرخانه (روتور) به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور چرخانه به چرخانه اعمال می‌شود، می‌گردد.

اغلب موتورهای الکتریکی دوار هستنند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) چرخانه یا روتور و بخش ثابت ایستانه یا استاتور خوانده می‌شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده‌است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین، هر کدام از بخش‌های چرخانه یا ایستانه می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

سیم پیچی موتور الکتریکی

موتورهای DC

موتور کلاسیک جریان مستقیم دارای آرمی‌چری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می‌کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه‌ای از ولتاژ و جریان عبوری از سیم پیچ‌های موتور و بار موتور یا گشتاور ترمزی، بستگی دارد.

سرعت موتور جریان مستقیم وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپ‌ها (نوعی کلید تغییر دهنده وضعیت سیم‌پیچ) در سیم‌پیچی موتور یا با داشتن یک منبع ولتاژ متغیر، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعت‌های پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای کششی نظیر لوکوموتیوها استفاده می‌کنند.

اما به هرحال در طراحی کلاسیک محدودیت‌های متعددی وجود دارد که بسیاری از این محدودیت‌ها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبک‌ها و کموتاتور، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبک‌ها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبک‌ها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص‌الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچ‌ها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

موتورهای میدان سیم پیچی شده

بستن موتور به صورت شنت سری و کامپوند
بستن موتور به صورت شنت سری و کامپوند
آهنرباهای دائم در بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر، جریان میدان را کمتر هم کنیم. این تکنیک برای کشش الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

~~موتور هاي جريان مستقيم تحريک مستقل~~

اين نوع الکترو موتور ها نيز مانند ساير موتور هاي الکتريکي از نعمت گشتاور بالا در لحظه راه اندازي برخوردار هستند با اين تفاوت که اينجا سرعت و گشتاور ب ولتاژ بالشتک يا همان فيلد بستگي دارد. به عنوان مثال اگر ولتاژ يک موتور تحريک مستقل ١٠٠ولت باشد بايد ابتدا بالشتک رو مستقل از آرميچر تحريک کرده (حداقل ۵٠ ولت) و سپس آرميچر را برق دار کنيد. در اين صورت موتور شروع به چرخيدن ميکند. براي افزايش سرعت ولتاژ آرميچر را به حد نامي برسانيد و ولتاژ فيلد را کاهش دهيد. براي بالا بردن گشتاور ولتاژ فيلد را بالا برده و توجه داشته باشيد که در اين شرايط سرعت ب نسبت بالا رفتن گشتاور کاهش ميابد. براي تغيير جهت چرخش جريان فيلد را معکوس کرده و هرگز بدون تحريک فيلد ، آرميچر را برق دار نکنيد.

موتورهای جریان مستقیم سری
موتورهای جریان مستقیم شنت
موتورهای جریان مستقیم کمپوند

اصل ساخت اولیه و کاربری
مانند بیشتر موتورها، یک موتورهای القایی AC یک قسمت ثابت بیرونی به نام استاتور و یک روتور که در درون آن می‌چرخد دارند، که میان آندو یک فاصله دقیق کارشناسی شده وجود دارد. به طور مجازی همه موتورهای الکتریکی از میدان مغناطیسی دوار برای گرداندن روتورشان استفاده می‌کنند. یک موتور سه فاز القایی AC تنها نوعی است که در آن میدان مغناطیسی دوار به طور طبیعی بوسیله استاتور به خاطر طبیعت تغذیه گر آن تولید می‌شود. در حالی که موتورهای DC به وسیله‌ای الکتریکی یا مکانیکی برای تولید این میدان دوار نیاز دارند. یک موتور القایی AC تک فاز نیازمند یک وسیله الکتریکی خارجی برای تولید این میدان مغناطیسی چرخشی است. در درون هر موتور دو سری آهنربای مغناطیسی تعبیه شده‌است. در یک موتور القایی AC یک سری از مغناطیس شونده‌ها به خاطراینکه تغذیه AC به پیچه‌های استاتور متصل است در استاتور تعبیه شده‌اند. بخاطر طبیعت متناوب تغذیه ولتاژ AC بر اساس قانون لنز نیرویی الکترومغناطیسی به روتور وارد می‌شود (درست شبیه ولتاژی که در ثانویه ترانسفورماتور القا می‌شود). بنابر این سری دیگر از مغناطیس شونده‌ها خاصیت مغناطیسی پیدا می‌کنند. -نام موتور القایی از اینجاست-. تعامل میان این مگنت‌ها انرژی چرخیدن یا تورک (گشتاور) را فراهم می‌آورد. در نتیجه موتور در جهت گشتاو بوجود آمده چرخش می‌کند.

استاتور

استاتور از چندین قطعه باریک آلومینیم یا آهن سبک ساخته شده‌است. این قطعات بصورت یک سیلندر تو خالی به هم منگنه و محکم شده اند(هسته استاتور) با شیارهایی که در شکا یک نشان داده شده‌اند. سیم پیچهایی از سیم روکش دار در این شیارها جاسازی شده‌اند. هر گروه پیچه با هسته‌ای که آن را فرا گرفته یک آهنربای مغناطیسی (با دو پل) را برای کار کردن با تغذیه AC شکل می‌دهد. تعداد قطبهای یک موتور القایی AC به اتصال درونی پیچه‌های استاتوربستگی دارد. پیچه‌های استاتور مستقیماً به منبع انرژی متصل اند. آنها به صورتی متصل اند که با برقراری تغذیه AC یک میدان مغناطیسی چرخنده تولید می‌شود.

روتور

روتور از چندین قطعه مجزای باریک فولادی که میانشان میله‌هایی از مس یا آلومینیم تعبیه شده ساخته شده‌است. در رایج‌ترین نوع روتور (روتور قفس سنجابی) این میله‌ها در انتهای خود به صورت الکتریکی و مکانیکی بوسیله حلقه‌هایی به هم متصل شده‌اند. تقریباً ۹۰ درصد از موتورهای القایی دارای روتور قفس سنجابی می‌باشند و این به خاطر آن است که این نوع روتور ساختی مستحکم و ساده دارد. این روتور از هسته‌ای چند تکه استوانه‌ای با محوری که شکافهای موازی برای جادادن رساناها درون آن دارد تشکیل شده‌است. هر شکاف یک میله مسی یا آلومنیومی یا آلیاژی را شامل می‌شود. در این میله‌ها به طور دائمی بوسیله حلقه‌های انتهایی آنها همچنان که در شکل دو مشاهده می‌شود مدار کوتاه برقرار است. چون این نوع مونتاژ درست شبیه قفس سنجاب است، این نام برای آن انتخاب شده‌است. میله‌ای روتور دقیقاً با محور موازی نیستند. در عوض به دو دلیل مهم قدری اریب نصب می‌شوند. دلیل اول آنکه موتور با کاهش صوت مغناطیسی بدون صدا کارکرده و برای آنکه از هارمونیکها در شکافها کاسته شود. دلیل دوم آن است که گرایش روتور به هنگ کردن کمتر شود. دندانه‌های روتور به خاطر جذب مغناطیسی مستقیم (محض) تلاش می‌کنند که در مقابل دندانه‌های استاتور باقی بمانند. این اتفاق هنگامی می‌افتد که تعداد دندانه‌های روتور و استاتور برابر باشند. روتور بوسیله مهارهایی در دو انتها روی محور نصب شده؛ یک انتهای محور در حالت طبیعی برای انتقال نیرو بلندتر از طرف دیگر گرفته می‌شود. ممکن است بعضی موتورها محوری فرعی در طرف دیگر(غیر گردنده – غیر منتقل کننده نیرو) برای اتصال دستگاههای حسگر حالت(وضعیت) و سرعت داشته باشند. بین استاتور و روتور شکافی هوایی موجود است. بعلت القا انرژی از استاتور به روتور منتقل می‌شود. تورک تولید شده به روتور نیرو داده و سپس برای چرخیدن به آن نیرو می‌کند. صرف نظر از روتور استفاده شده قواعد کلی برای دوران یکی است.

موتورهای یونیورسال

یکی از انواع موتورهای DC میدان سیم پیچی شده موتور FVTEیونیورسال است. اسم این موتورها از این واقعیت گرفته شده‌است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه جریان متناوب کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) هم‌زمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان متناوب سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.
مزیت این موتورها این است که می‌توانPOGH تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعت‌های بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهایFG AC در دستگاه‌هایی نظیر مخلوط کن و ابزارهای برقی خانگی مورد استفاده قرار می‌گیرند.

موتورهای AC

نوشتار اصلی: موتور متناوب

موتورهای القایی AC عمومی‌ترین موتورهایی هستند که در سامانه‌های کنترل حرکت صنعتی و همچنین خانگی استفاده می‌شوند. طراحی ساده و مستحکم، قیمت ارزان، هزینه نگه داری پایین و اتصال آسان و کامل به یک منبع نیروی AC امتیازات اصلی موتورهای القایی AC هستند. انواع متنوعی از موتورهای القایی AC در بازار موجود است. موتورهای مختلف برای کارهای مختلفی مناسب اند. با اینکه طراحی موتورهای القایی AC آسانتر از موتورهای DC است، ولی کنترل سرعت و گشتاور در انواع مختلف موتورهای القایی AC نیازمند درکی عمیقتر در طراحی و مشخصات در این نوع موتورهاست. این نکته در اساس انواع مختلف، مشخصات آنها، انتخاب شرایط برای کاربریهای مختلف و روشهای کنترل مرکزی یک موتورهای القایی AC را مورد بحث قرار می‌دهد.

انواع موتورهای القایی

عموماً دسته بندی موتورهای القای براساس تعداد پیچه‌های استاتور است که عبارتند از:

موتورهای القایی تک فاز
موتورهای القایی سه فاز
موتورهای القایی تک فاز

احتمالاً بیشتر از کل انواع موتورها از موتورهای القایی AC تک فاز استفاده می‌شود. منطقی است که باید موتورهای دارای کمترین گرانی و هزینه نگه داری بیشتر استفاده شود. موتور القایی AC تک فاز بهترین مصداق این توصیف است. آن طور که از نام آن برمیاید این نوع از موتور تنها یک پیچه (پیچه اصلی) دارد و با یک منبع تغذیه تک فاز کار می‌کند. در تمام موتورهای القایی تک فاز روتور از نوع قفس سنجابی است. موتور القایی تک فاز خود راه انداز نیست. هنگامی که موتور به یک تغذیه تک فاز متصل است پیچه اصلی دارای جریانی متناوب می‌شود. این جریان متناوب میدان مغناطیسی ای ضربانی تولید می‌کند. بسبب القا روتور تحریک می‌شود. چون میدان مغناطیسی اصلی ضربانی است تورکی که برای چرخش موتور لازم است بوجود نمی‌آید و سبب ارتعاش روتور و نه چرخش آن می‌شود. از این رو موتور القایی تک فاز به دستگاه آغاز گری نیاز داردکه می‌تواندضربات آغازی را برای چرخش موتور تولید کند. دستگاه آغاز گر موتورهای القایی تک فاز اساساً پیچه‌ای اضافی در استاتور است (پیچه کمکی) که در شکل سه نشان داده شده‌است. پیچه استارت می‌تواند دارای خازنهای سری ویا سوئیچ گریز از مرکز باشد. هنگامی که ولتاژ تغذیه برقرار است جریان در پیچه اصلی بسبب مقاومت پیچه اصلی ولتاژتغذیه را افت می‌دهد (ولتاژ به جریان تبدیل می‌شود). در همین حین جریان در پیچه استارت بسته به مقاومت دستگاه استارت به افزایش ولتاژ تغذیه تبدیل می‌شود. فعل و انفعال میان میدانهای مغناطیسی که پیچه اصلی و دستگاه استارت می‌سازند میدان برایندی می‌سازند که در جهتی گردش می‌کند. موتور گردش را در جهت این میدان برایند آغاز می‌کند. هنگامی که موتور به ۷۵ درصد دور مجاز خود می‌رسد یک سوئیچ گریز از مرکز پیچه استارت را از مدار خارج می‌کند. از این لحظه به بعد موتور تک فاز می‌تواند تورک کافی را برای ادامه کارکرد خود نگه دارد. بجز انواع خاص دارای Capacitor start / capacitor run عموماهمه موتورهای تک فاز فقط برای کاربری‌های بالای 3/4 hp استفاده می‌شوند. بسته به انواع تکنیکهای استارت موتورهای القایی تک فاز AC در دسته بندی ای وسیع آن گونه که در شکل زیر توصیف شده قرار دارند.

موتور القایی AC فاز شکسته

موتور فاز شکسته همچنین به عنوان Induction start/Induction run (استارت القایی/کارکرد القایی)هم شناخته می‌شود که دو پیچه دارد. پیچه استارت از سیم نازکتر و تعداد دور کمتر نسبت به پیچه اصلی برای بوجود آوردن مقاومت بیشتر ساخته شده‌است. همچنین میدان پیچه استارت در زاویه‌ای غیر از آنچه که پیچه اصلی دارد قرار می‌گیرد که سبب آغاز چرخش موتور می‌شود. پیچه اصلی که از سیم ضخیم تری ساخته شده‌است موتور را همیشه درحالت چرخش باقی نگه می‌دارد. تورک آغازین کم است مثلاً ۱۰۰ تا ۱۷۵ درصد گشتاور ارزیابی شده. موتور برای استارت جریانی زیاد طلب می‌کند. تقریباً ۷۰۰ تا ۱۰۰۰ درصد جریان ارزیابی شده. تورک بیشینه تولید شده نیز در محدوده ۲۵۰ تا ۳۵۰ درصد از گشتاور براوردشده می‌باشد.(برای مشاهده منحنی سرعت – گشتاور به شکل ۹نگاه کنید). کاربریهای خوب برای موتورهای فاز شکسته شامل سمباده (آسیاب)های کوچک، دمنده‌ها و فنهای کوچک و دیگر دستگاههایی با نیاز به گشتاور آغازین کم با و نیاز به قدرت ۱/۲۰ تا ۱/۳ اسب بخار می‌باشد. از استفاده از این موتورها در کاربریهایی که به دوره‌های خاموش و روشن و گشتاور زیاد نیازدارند خود داری نمایید.

موتور القایی با استارت خازنی

این نوع، موتور اصلاح شده فاز شکسته با خازنی سری با آن برای بهبود استارت است. همانند موتور معمولی فاز شکسته این نوع موتور یک سوئیچ گریز از مرکز داشته که هنگامی که موتور به ۷۵ درصد سرعت ارزیابی شده می‌رسد، پیچه استارت را از مدار خارج می‌نماید. از آنجا که خازن در مدار استارت است، گشتاور استارت بیشتری تولید می‌کند، معمولاً در حدود ۲۰۰ تا ۴۰۰ درصد گشتاور ارزیابی شده. و جریان استارت معمولاً بین ۴۵۰ تا ۵۷۵ درصد جریان ارزیابی شده‌است. که بسیار کمتر از موتور فاز شکسته و بعلت سیم ضخیمتر در مدار استارت است. برای منحنی سرعت گشتاور به شکل ۹ مراجعه کنید. نوع اصلاح شده‌ای از موتور با استارت خازنی، موتور با استارت مقاومتی است. در این نوع موتور خازن استارت با یک مقاومت جایگزین شده‌است. موتور استارت مقاومتی در کاربریهایی مورد استفاده قرار می‌گیرد که میزان گشتاور استارتینگی کمتر از مقداری که موتور استارت خازنی تولید می‌کند لازم است. صرف نظر از هزینه این موتور امتیازات عمده‌ای نسبت به موتور استارت خازنی ندارد. این موتورها در انواع مختلف کاربریهای پولی و تسمه‌ای مانند تسمه نقاله‌های کوچک، پمپها و دمنده‌های بزرگ به خوبی بسیاری از خود گردانها و کاربریهای چرخ دنده‌ای استفاده می‌شوند.

موتورهای AC القایی با خازن دائمی اسپلیت

این موتور (PSC) نوعی خازن دائماً متصل به صورت سری به پیچه استارت دارد. این کار سبب آن می‌شود که پیچه استارت تازمانی که موتور به سرعت چرخش خود برسد بصورت پیچه‌ای کمکی عمل کند. از آنجا که خازن عملکرد اصلی، باید برای استفاده مداوم طراحی شده باشد، نمی‌تواند توان استارتی معادل یک موتور استارت خازنی ایجاد نماید. گشتاور استارت یک موتور (PSC) معمولاً کم و در حدود ۳۰ تا ۱۵۰ درصد گشتاور ارزیابی شده‌است. موتورهای (PSC) جریان استارتی پایین، معمولاً در کمتر از ۲۰۰ درصد جریان برآورد شده دارند که آنها را برای کاربریهایی با سرعتهای دارای چرخه‌های خاموش روشن بالا بسیار مناسب می‌سازد. برای منحنی سرعت – گشتاور به شکل ۹ مراجعه کنید. موتورهای PSC امتیازات فراوانی دارند. طراحی موتور براحتی برای استفاده با کنترل کننده‌های سرعت می‌تواند اصلاح شود. همچنین می‌توانند برای بازدهی بهینه و ضریب توان بالا در فشار برآورد شده طراحی شوند. آنها به عنوان قابل اطمینان‌ترین موتور تک فاز مطرح می‌شوند. مخصوصا به این خاطر که به سوئیچ گریز از مرکز نیازی ندارند. موتورهای PSC بسته به طراحیشان کاربری بسیار متنوعی دارند که شامل فنها، دمنده‌ها با نیاز به گشتاور استارت کم و چرخه‌های کاری غیر دائمی مانند تنظیم دستگاهها (طرز کارها)، عملگر درگاهها و بازکننده‌های درب گاراژها می‌شود.

موتورهای AC القایی استارت با خازن/ کارکرد با خازن

این موتور، همانند موتور با استارت خازن، خازنی از نوع استارتی در حالت سری با پیچه کمکی برای گشتاور زیاد استارت دارد. همچنین مانند یک موتور PSC خازنی از نوع کارکرد که درکنار خازن استارت در حالت سری با پیچه کمکی است که بعد از شروع به کار موتور از مدار خارج می‌شود. این حالت سبب بوجود آمدن گشتاوری در حد اضافی می‌شود. این نوع موتور می‌تواند… و بازده بیشتر طراحی شود. این موتور بخاطر خازنهای کارکرد و استارت و سوئیچ گریز از مرکز آن پرهزینه‌است. این موتور می‌تواند در بسیاری از کاربریهایی که از هرموتور تک فاز دیگری انتظار می‌رود استفاده شود. این کاربریها شامل ماشینهای مرتبط با چوب، کمپرسورهای هوا، پمپهای آب فشار قوی، پمپهای تخلیه و دیگر کاربردهای نیازمند گشتاورهای بالا در حد ۱ تا ۱۰ اسب بخار می‌شوند.

موتور القایی AC با قطب سایه دار

موتورهای با قطب سایه دار فقط یک پیچه اصلی دارند و پیچه استارت ندارند. استارت خوردن بوسیله طرح خاص آن که حلقه پیوسته مسی ای را دور قسمت کوچکی از هر قطب موتور حلقه می‌کند انجام می‌شود. این سایه که قطب را دو تکه می‌کند سبب می‌شود که میدان مغناطیسی ای ضعیفتر در ناحیه سایه خورده نسبت به قسمت دیگر و در کنار آن بوجود آید. تعامل میان میدانها محور را به چرخش وامی دارد. چون موتور با قطب سایه خورده پیچه استارت، سوئیچ استارت ویا خازن ندارد از نظر الکتریکی ساده و ارزان است. همچنین سرعت آن راصرفا با تغییر ولتاژ یا بوسیله یک پیچه با چند دور مختلف می‌توان کنترل کرد. ساخت موتور با قطب سایه خورده از نظر مکانیکی اجازه تولید انبوه را می‌دهد. درحقیقت این موتورها به موتورهای یک بار مصرف معروفند. بدین معنی که جایگزین کردن آنها ارزانتر از تعمیر آنهاست. موتورهای با قطب سایه دار بسیاری مشخصات مثبت دارند. اما چندین مورد بی فایدگی هم دارند. گشتاور استارت کم آن معمولاً ۲۵ تا ۷۵ درصد گشتاور برآوردی است. این موتور موتوری با اتلاف بالاست که سرعتی حدود ۷ تا ۱۰ درصد سرعت سنکرون دارد. عموماً بازده این نوع موتور بسیار پایین است (زیر ۲۰ درصد). هزینه اولیه پایین آن را برای قدرت کمتر یا کاربردهای با کار کمتر مناسب می‌سازد. شاید وسیعترین استفاده از آنها در فنهای چند سرعته برای استفاده خانگی است. ولی گشتاور کم موتور دارای قطب سایه دار را برای بیشتر کاربریهای صنعتی یا تجاری که در آنها کار مداوم یا چرخه‌های گردش بیشتر معمول است غیر قابل استفاده می‌کند.

موتورهای AC سه فاز

برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان، استفاده می‌کنند. اغلب، روتور شامل تعدادی هادی‌های مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادی‌ها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از بسامد منبع تغذیه اعمالی به موتور، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور هم‌زمان وجود دارد، موتور به صورت هم‌زمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز، به گردش در می‌آید. موتورهای هم‌زمان (سنکرون) را می‌توانیم به عنوان مولد جریان هم بکار برد.

سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش، یا اختلاف در سرعت چرخش بین چرخانه و میدان ایستانه، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می‌توانیم با تغییر دادن بسامد منبع تغذیه، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.

موتور قفس سنجابی

تقریباً ۹۰ درصد موتورهای القایی AC سه فاز از این نوعند. که روتور آنها از نوع قفس سنجابی است که در ابتدا توضیح داده شد. محدوده‌های طبقه بندی نیروی آنها از یک سوم تا چند صد اسب بخار است. موتورهای این نوعی که در دسته یک اسب بخار به بالا اند در مقایسه با مشابه‌های تک فاز کم هزینه ترند و می‌توانند در استارت در فشارهای سنگینتر بکار کنند.

موتور با روتور پیچشی

موتور با حلقه لغزان یا موتور روتور پیچشی نوعی از موتور القایی قفس سنجابی است. درحالی که استاتور در این موتور همانند موتور قفس سنجابی است یک سری از پیچه‌ها را روی روتور خود دارد که در حالت مدارکوتاه نیستند ولی به یک سری از رینگهای لغزان ختم می‌شوند. این پیچه‌ها در اضافه کردن مقاومتها و خازنهای خارجی سودمندند. اسلیپ لازم برای تولید گشتاور بیشینه نهایی مستقیماً با مقاومت روتور متناسب است. در موتور با حلقه لغزان مقاومت موثر روتور با اضافه کردن مقاومت خارجی میان حلقه‌های لغزان کاهش میابد. بنابراین امکان بدست آوردن لغزش بیشتر و همچنین گشتاور بیشینه نهایی در سرعتهای کمتر وجود دارد. یک مقاومت خارجی می‌توانددر سرعت تقریباً صفر را نتیجه دهد که گشتاو بیشینه نهایی بسیار زیادی با جریان استارت کم را تولید می‌کند. هنگامی که موتور شتاب می‌گیرد مقدار مقاومت می‌تواند کاهش یابد تا مشخصات موتور برای کارهایی با فشار زیاد مناسب شود. هنگامی که موتور به سرعت اصلی می‌رسد خازنهای خارجی از مدار خارج می‌شوند و این یدین معنی است که اکنون موتور به عنوان یک موتور القایی استاندارد کار می‌کند. این نوع موتور برای فشارهای مانا (کارهایی با فشار ثابت) که درآنها گشتاور نهایی باید در سرعت تقریباً صفر تولید شده و موتور درکمترین زمان و با کمترین مصرف جریان تا سرعت بیشینه شتاب گیرد ایده‌آل است. قسمت پایینی موتور با حلقه لغزان که در آن حلقه‌ها به همراه مجموعه براشها است به نگهداری منظم نیاز داردکه از نظر قیمت، استاندارد بودن آن را به عنوان یک موتور قفس سنجابی غیر ممکن می‌کند. اگر پیچه‌ها کوتاهتر شوده و استارت زده شود معمولاً جریان بالااز روتور در حالت متوقف عبورمی کند که در حد ۱۴۰۰ درصد است. درحالیکه در این حالت درآن گشتاوری در حد ۶۰درصد تولید می‌نماید که در بسیاری از کاربریها چنین امکان پشتیبانی چنین چیزی نیست. با تغییر مقاومتهای روتور منحنی سرعت گشتاور تعدیل می‌گرددکه بدان وسیله سرعتی که درآن موتور در فشاری مخصوص کارمی کند تعدیل می‌شود. ظرفیت تکمیل فشار می‌تواند سرعت را تا ۵۰درصد سرعت سنکرون کاهش دهد. خصوصاً هنگامی که فشار، از انواعی با نیاز به گشتاور – سرعتهای مختلف مثل پرسهای چاپ یا کمپرسورها است. کاهش سرعت تا زیر ۵۰درصد بازده را به خاطر اتلاف انرژی در مقاومتها به شدت کاهش می‌دهد. این نوع موتور در کاربریهایی با چرخش با گشتاور و سرعتهای مختلف مانند پرسهای چاپ، کمپرسورها، تسمه نقاله‌ها، بالابرنده‌ها و آسانسورها مورد استفاده قرار می‌گیرد.

موتورهای پله‌ای
نوشتار اصلی: موتور پله‌ای‎

نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهایی با کنترل الکترونیکی روشن و خاموش شدن خارجی، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتاً کنترل شده، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با رایانه یکی از فرم‌های سیستم‌های تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان بار باشند.

موتورهای خطی
یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع‌السیر مگلو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند.

آب رسانی ساختمانآسانسورالکتروموتوربالابرترانس جوشتعمیرات آسانسورتعمیر بالابرتعمیر موتور آسانسورتعمیر پمپدینام جوشدینام پیچیدینام پیچی موتورسرویس موتور کولرسرویس کولرسنگ شکنسیمپیچیسیم پیچیسیم پیچی بالابرسیم پیچی موتورسیمپیچی موتورسیم پیچی موتور آسانسورسیم پیچی موتور تک فازسیم پیچی موتور سه فازسیم پیچی موتور کولرسیمپیچی موتور کولرسیم پیچی پمپسیم پیچی کولرسیمپیچی کولرلجن کشموتورموتور آسانسورموتور تک فازموتور ساختمانموتور سه فازموتور صنعتیموتور کولرمگنت ترمزهواکشپمپ زمینیپمپ شناورپمپ های زمینیچیلرکف کشکمرچاهیکولر